
University of Technology, Sydney

Faculty of Engineering

IMPLEMENTING SCALABLE VECTOR GRAPHICS
IN MOZILLA

by

Brian Birtles

Student Number: 00035927

Project Number: S04-096

Major: Software Engineering

Supervisors: Mr Steve Murray

Dr Craig Scott

A 12 Credit Point Project submitted in partial fulfilment of the

requirement for the Degree of Bachelor of Engineering

25 November 2005

Acknowledgements

In working on this project I have benefitted from the generous help

of many individuals. In particular Patrick L. Schmitz has allowed

me to use his excellent design proposal which I have referred to

extensively in this report and which has assisted my work

tremendously.

Many in the Mozilla community have also very kindly given me

guidance and assistance as I have tried to grasp and have wrestled

with the Mozilla code. In particular I have valued the advice and

assistance of Robert O’Callahan, Tim Rowley, Jonathan Watt and

Alex Fritze.

Many thanks also to those who have followed my progress and

provided feedback or encouragement. Zbigniew Braniecki’s

assistance in testing and Olaf Hoffmann’s feedback and test suite

have been particularly valuable.

You are worthy, our Lord and God,

to receive glory and honour and power,

for You created all things,

and by Your will they were created

and have their being.

— Revelation 4:11

Implementing Scalable Vector Graphics in Mozilla

Brian Birtles

Spring 2005

As the World Wide Web has grown in popularity and sophistication many

have realised its potential as more than just an information medium but as a

platform for developing and distributing software applications. Applications

built on this Web platform are often faster to develop, easier to deploy and

maintain, and allow users greater physical freedom as Web applications can

be used from any electronic device with an Internet connection and a Web

browser. The common XML underpinning of the Web platform also opens up

great potential for integrating and syndicating disparate information sources

and technologies. So far however, applications built on the Web platform

cannot provide the same rich user experience as their desktop counterparts

and this prevents many solutions from being realised as Web applications.

This Capstone project contributes to the implementation of a graphics stan-

dard called Scalable Vector Graphics, or SVG, for a popular Web application

platform, Mozilla. Such an implementation allows application developers to

produce richer, more interactive Web applications much like traditional desk-

top applications.

Of the SVG features yet to be implemented in the Mozilla platform, declar-

ative animation is one of the most significant and is frequently requested. A

design is presented that attempts to address the full range of features defined

for SVG’s declarative animation and that is suited to the requirements par-

ticular to the Mozilla codebase. Using this design, the bulk of the animation

model is implemented and is detailed in this report. It is anticipated that this

implementation will form the basis for the remainder of Mozilla’s SVG anima-

tion features and could potentially be extended to animate content other than

SVG providing an even richer application platform still.

Contents

1 Background 1

1.1 The Web platform to date . 2

1.2 Graphics on the Web . 4

1.3 SVG: Vector graphics for the Web platform 6

1.4 SVG and Flash . 7

1.4.1 SVG: The XML-based standard 7

1.4.2 SVG: The open standard 8

1.5 Other alternatives to SVG . 10

1.6 State of the SVG-enabled platform 11

1.7 Mozilla . 12

2 Project outline 16

2.1 Declarative animation . 16

2.1.1 Features of SMIL Animation 20

2.2 Declarative animation as a university project 22

iv

CONTENTS v

3 Engineering process 25

3.1 Process influences . 25

3.2 The agile approach . 26

3.3 Open-source development . 27

3.4 Process overview . 28

3.5 Project familiarisation: Tackling a “first bug” 31

3.6 The first prototype . 32

3.7 The second prototype . 32

3.8 Requirements analysis . 33

3.9 Design strategy . 34

3.10 Test strategy . 35

3.10.1 Unit tests . 35

3.10.2 SVG test cases . 36

3.10.3 Public test suites . 37

3.11 Communication . 38

3.11.1 Documentation . 39

3.11.2 Risk management . 40

4 Analysis 42

4.1 Analysis of the SMIL model . 42

4.1.1 Data-type agnostic animation 42

4.1.2 Additive composition . 44

4.1.3 Timer independence . 44

CONTENTS vi

4.1.4 Dynamic document model 45

4.1.5 Dynamic dependencies . 45

4.2 Analysis of the Mozilla codebase 46

4.2.1 Netscape Portable Runtime 46

4.2.2 XPCOM . 47

4.2.3 Utility of SMIL . 48

4.2.4 The creation of a platform 48

4.2.5 Contributing to a mature product 49

5 Design 50

5.1 Design process . 50

5.2 Operation overview . 54

5.2.1 Document setup . 54

5.2.2 Sampling . 54

5.2.3 Composition . 55

5.3 Comparison with Schmitz’s model 57

5.4 Timing model . 57

5.4.1 Animation controller . 57

5.4.2 Timed document root . 59

5.4.3 Timed element . 59

5.4.4 Time client interface . 60

5.4.5 Time value specification 60

5.4.6 Interval . 60

CONTENTS vii

5.4.7 Instance time . 60

5.4.8 Time value . 61

5.5 Animation model . 61

5.5.1 Animation registry . 63

5.5.2 Animation observer . 64

5.5.3 Compositor . 65

5.5.4 Animation function . 65

5.5.5 Animated value interface 66

5.5.6 Animated attribute interface 66

5.5.7 Animated element interface 66

5.6 Design evaluation . 67

6 Implementation details 69

6.1 Controlling the animation start-point 69

6.2 Integrating SVG data types . 71

6.3 Frozen ‘to animation’ . 72

6.4 Spline-based timing . 77

6.5 Ownership . 82

6.6 Performance tuning . 83

6.7 Threading . 84

7 Conclusions 85

7.1 Implementation status . 85

7.2 Future directions . 88

CONTENTS viii

Glossary 92

References 95

A Requirements database 101

B Test results 107

B.1 Animation function tests . 107

B.1.1 TestSampleAt . 107

B.1.2 TestParameterPriority . 108

B.1.3 TestValuesParsing . 109

B.1.4 TestAdditive . 109

B.1.5 TestKeyTimes . 110

B.1.6 TestKeySplines . 113

B.1.7 TestAccumulate . 115

B.1.8 TestByAnimation . 116

B.2 Timed element tests . 117

B.2.1 TestOffsetStartup . 117

B.2.2 TestMultipleBegins . 117

B.2.3 TestNegativeTimes . 118

B.2.4 TestSorting . 118

B.2.5 TestZeroDurationIntervals 119

B.2.6 TestMoreZeroDurationIntervals 120

B.2.7 TestEndSpecs . 122

CONTENTS ix

B.2.8 TestBlankBegin . 122

B.2.9 TestIndefiniteBegin . 123

B.2.10 TestBadInput . 123

B.2.11 TestUnsetting . 123

B.2.12 TestRepeatSpecs . 124

B.2.13 TestRepeating . 125

B.2.14 TestFillMode . 126

B.2.15 TestRestartMode . 128

B.2.16 TestMin . 129

B.2.17 TestMax . 131

B.2.18 TestMinAndMax . 133

List of Figures

1.1 Comparison between raster and vector graphics. 5

2.1 A simple SVG document using DOM-based animation. 17

2.2 A simple SVG document using declarative animation. 18

2.3 A possible work-flow where XSLT is used to transform an SVG

document animated with SMIL into a static timeline of the same

animation, drawn using SVG. 19

3.1 The Agile Manifesto. 26

3.2 The initially envisioned spiral process. 30

4.1 A set of animation elements targeting different attributes on the

same target element. 43

4.2 An example of two animations targeting the same attribute. . . . 44

5.1 Class diagram of the design prior to incorporating Schmitz’s ideas. 51

5.2 Overview class diagram after incorporating Schmitz’s ideas. 53

5.3 Sequence diagram for a single animation sample. 56

5.4 Class diagram of the timing model. 58

5.5 Class diagram of the animation model. 62

x

LIST OF FIGURES xi

6.1 A simple animation that causes a circle to follow a triangle-wave

pattern. 73

6.2 An animation composed of the triangle wave from Figure 6.1 com-

bined with a ‘to animation’. 73

6.3 Alternative behaviour for a frozen ‘to animation’. 76

6.4 The spline graph used by the keySplines attribute. 78

6.5 Screenshot from the keySplines test graphic. 82

List of Tables

7.1 SMIL Animation features implemented in this project. 86

A.1 Requirements database . 101

xii

Chapter 1

Background

“Everything in software changes. The requirements change. The

design changes. The business changes. The technology changes. The

team changes. The team members change.” — Kent Beck

Having seen more than its fair share of silver bullets and breakthrough paradigms,

the high-technology industry, and particularly the software industry, has started

to regard “the next big thing” with more cool indifference than zealous enthu-

siasm. It is often said that in such an industry, change is the only constant.

Recognition of this fact is the primary motivation behind Beck’s (2000) Extreme

Programming, the motto of which is “Embrace Change”.

At the same time, it is usually not hard to see that many of these new trends

are in fact not new but are simply extensions of older developments (Pike 2005),

sometimes much older. For example, XML, one of the most popular developments

of recent times is derived from SGML, developed in the 1960s. The context and

the applications of these technologies however are new.

In this chapter and the next we survey some of the emerging technologies in the

field of Web application development. However, as we shall see, many of these

technologies are derived from established and proven concepts but adapted to

the context of the Web, they provide new possibilities.

1

CHAPTER 1. BACKGROUND 2

This chapter describes the context in which some of these technologies have

emerged and therefore the context for my Capstone project. The next chapter

describes the technologies that my project deals with from a technical point of

view.

1.1 The Web platform to date

When the World Wide Web was first developed in 1989, it was designed to

combine “the techniques of information retrieval and hypertext to make an easy

but powerful global information system” (Berners-Lee 1990). While this must

have seemed like an ambitious goal in 1989, it might now almost be considered

too modest. Since the first Web page was produced in 1990 the popularity of the

Web has grown exponentially (Bell 1999, p. 9).

The popularity of the Web led in turn to the omnipresence of the Web browser.

It is now the case, that any computer, anywhere, running any operating system

will almost certainly be equipped with a Web browser, and the same will soon

be true for mobile phones, televisions and even refrigerators.

For a long time many in the software industry have regarded the idea of being

able to “write once, run anywhere” as a sort of holy grail (Torvalds 1999, p. 101).

This was the primary goal of the Java platform but political and technical issues

have so far prevented it from reaching its full potential as a client-side technol-

ogy (Bucken 2003). The Web, however, offers an even more attractive platform

for application development. Not only is it available on nearly every computer

and perhaps some day on nearly every electrical appliance—something the Java

platform nearly achieved—but Web applications are hosted by a central server

which allows easy maintenance, requires no installation effort on the user’s part,

and, perhaps most importantly, allows the same data to be accessed regardless

of the user’s physical location.

This is not, however, a new idea. The idea of hosting applications on a central

computer has existed since the first mainframe computers, distributed applica-

tions have existed since at least ARPANET in 1969, and the notion of allowing

CHAPTER 1. BACKGROUND 3

users more physical flexibility in their use of computers is just one of many con-

cepts that have long been discussed under the name “ubiquitous computing”.

The novelty of the Web is simply that it is available now, it is an open platform

as we shall discuss later, and it is approaching omnipresence.

However, the story of the Web up until now has not been entirely smooth. Along

with its growth in popularity, greater demands have been made of the Web. The

Web was originally intended to convey information independent of any particular

presentation, but with the rise in the Web’s popularity and broadening of its

user base came demands for control over the formatting of Web pages. This

demand was met, in some cases, by developing new standards such as Cascading

Style Sheets (CSS), but most often was met by individual Web browser vendors

extending Web standards in non-standard ways. This uncoordinated innovation

left many of those developing content and software for this medium frustrated.

After a frenzy of competition in the late 1990s known as the browser wars, Mi-

crosoft Internet Explorer supplanted Netscape Communicator as the dominant

Web browser. After this point the development of new client-side Web technolo-

gies stagnated (Granneman 2005, p. 38). Instead, Web developers, as they came

to be known, focused on server-side technologies. This approach consists of per-

forming the bulk of the computational work on a central server and then sending

a snapshot of the information to a client, often using the lowest common denom-

inator of technologies on the client-side. This trend has seen the rise of scripting

languages such as PHP and Python combined with easy-to-use databases such

as MySQL and PostgreSQL. Once again, scripting languages and databases are

as ancient as Computing Science itself but are now applied in the context of

the Web. More recently, a greater emphasis has been placed on connecting such

systems using technologies such as Simple Object Access Protocol (SOAP); Web

Services Description Language (WSDL); Universal Description, Discovery, and

Integration (UDDI) and to some extent Really Simple Syndication (RSS) and

XSL Transformations (XSLT).

All the while however, little has changed on the client-side. While initial descrip-

tions of the Web were forward looking enough to consider ‘virtual documents’

(now called dynamically generated content—the focus of server-side technologies)

CHAPTER 1. BACKGROUND 4

and multimedia, they were still very much steeped in the language of ‘documents’

and ‘requests’. As Garrett (2005) explains, this model “makes the Web good for

hypertext [but] doesn’t necessarily make it good for software applications.”

Combining the few recent developments in client-side Web technologies, Garrett

explains how Asynchronous JavaScript and XML (AJAX) can be used to over-

come some of the limitations of this model. Yet in his introduction Garrett claims

that, “Desktop applications have a richness and responsiveness that has seemed

out of reach on the Web.” While AJAX addresses the issue of responsiveness,

the matter of richness remains.

1.2 Graphics on the Web

Much of the functionality on offer to desktop application programmers is sim-

ply not available to developers working with Web technologies such as HTML,

JavaScript and CSS. This is especially true for those Web developers adhering to

the lowest common denominator of support for standards provided by different

Web browsers.

As an example, a Web developer does not even have access to basic drawing

functions. In order to draw a circle, perhaps to highlight some information or

to use as a button, a Web developer must draw the circle first in a graphics

program; export it in an appropriate file format, size and colour depth; store

it on a Web server; and then create a link to the file. The export step requires

particular attention in order for the graphic to blend smoothly into the Web page

and in fact is the subject of whole books. This entire process must be repeated

to change the colour, shape or size of the circle. Furthermore, the graphic will

generally produce poor results when printed or used on mobile devices.

Compare this to a desktop application where a circle is typically drawn using a

function call to a graphics library, possibly provided by the operating system.

The circle produced in this manner blends into its surroundings, appears smooth

regardless of the destination and can often be recoloured quite effortlessly. Fig-

ure 1.1 demonstrates the difference in smoothness between the two techniques.

CHAPTER 1. BACKGROUND 5

Raster Vector

Figure 1.1: Comparison between the raster graphics typically used in Web
applications (left) and the vector graphics primitives available to desktop
applications (right) and a magnified section of each graphic below.

CHAPTER 1. BACKGROUND 6

Of course, those familiar with computer graphics would realise that these differ-

ences are simply the differences between raster or bitmapped graphics and vector

graphics. Whereas raster graphics describe images in terms of dots, vector graph-

ics describe an image through mathematical descriptions of lines. As a result,

raster graphics are generally better suited to describing photos, whereas vector

graphics are better suited to describing line art but as we shall see, vector graph-

ics have other properties that make them particularly suitable to application

development.

1.3 SVG: Vector graphics for the Web platform

In September 2001, the World Wide Web Consortium (W3C) presented a new

standard for describing two-dimensional graphics in XML called Scalable Vector

Graphics (SVG). This format provides all the advantages of vector graphics we

have already discussed and in that sense is not a new technology. The context,

however, is different.

Not only does SVG bring vector graphics to the domain of Web applications, but

because it is an open and XML-based format, SVG forms part of a growing set

of standards which collectively are coming to be known as the Web platform.

Aulenback (2004) picks up on the importance of SVG as a component of the Web

platform when he asserts that despite the promise of Web Services, “The current

missing item in Web Services is the visual interface”. SVG meets this need

by providing the sort of graphics needed for creating visual interfaces. Several

features of SVG make it particularly suited to this situation.

Firstly, SVG graphics are scalable. This makes them suitable for use on a range of

devices. For this reason, SVG has so far proved most successful on mobile devices

where screen sizes vary considerably and making effective use of the limited screen

real estate is particularly important. In July 2005, svg.org reported that more

than 50 mobile phones were capable of displaying SVG according to the SVG 1.1

Tiny Specification (svg.org 2005).

CHAPTER 1. BACKGROUND 7

Another important quality of SVG is that objects in an SVG graphic retain their

individual identity allowing them to be manipulated via style sheets and scripts.

Cagle (2004) emphasises this point, claiming that “the real advantage of vector

graphics comes from the fact that any such graphic is semantically modular”. He

then goes on to explain how this fact can be exploited to produce user interfaces

for large-scale distributed applications.

Finally, as a further benefit, SVG graphics are often smaller in size and therefore

faster to transfer between computers than their raster equivalents.

1.4 SVG and Flash

Anyone familiar with current technologies in use on the Web will quickly notice

similarities between SVG and Macromedia Flash. A feature-for-feature compari-

son of the two technologies reveals a considerable degree of overlap (Neumann &

Winter 2004). However, at least two very substantial differences lie beneath the

surface.

1.4.1 SVG: The XML-based standard

The first difference is the underlying technology. Because SVG is an XML-based

format it integrates seamlessly with other XML-based technologies including the

bulk of Web standards. For example, XSL Transformations (XSLT) can be used

to translate a Chemical Markup Language (CML) document into a visual repre-

sentation described using SVG.

Furthermore SVG has been designed with integration with other specific Web

standards in mind. For example,

• the ECMAScript scripting language also known as JavaScript can be used

to manipulate SVG elements using the same Document Object Model as is

used to manipulate an XHTML document;

CHAPTER 1. BACKGROUND 8

• Synchronised Multimedia Integration Language (SMIL) can be used to an-

imate both SVG and generic SMIL objects within a Multimedia Messaging

Service (MMS) document;

• Ruby could be used to annotate Japanese text in an XHTML fragment

within an SVG diagram;

• a user interface described with XML User Interface Language (XUL) might

use SVG to describe the toolbar icons;

• and the same Cascading Style Sheets (CSS) specification could be used to

style a combination of SVG and XHTML content.

The possibilities for combining these technologies are so broad that in August

2005 the World Wide Web Consortium (W3C) released the first draft of several

documents describing such use cases and requirements for this kind of integration

(World Wide Web Consortium 2005a, World Wide Web Consortium 2005b). Such

scenarios are referred to as compound documents but this is not the only mode

of operation supported by the Web platform.

Scripting languages such as ECMAScript, also known as JavaScript, can be used

to manipulate the elements of an XML document using a standard interface

known as the Document Object Model (DOM). This same interface can be used

to manipulate an SVG diagram, an XHTML Web page, an X3D virtual world

or all three. While it is also possible to manipulate objects in a Flash file using

ActionScript this approach does not scale well when dynamic manipulation of

other, XML-based standards are involved. As Aulenback (2004, p. 86) asserts,

without “XML from end to end . . . the links in the chain are broken and the

value proposition quickly lost”.

1.4.2 SVG: The open standard

The second difference that separates SVG from Flash is that SVG is an open

standard. In his keynote presentation at the SVG Open 2005 Conference, Cagle

provided the following definition of an open standard,

CHAPTER 1. BACKGROUND 9

A standard is in essence an agreement to speak a common language.

An open standard is the further agreement that anybody can speak

that same language, that one didn’t need to speak some form of secret

“club-speak” known only to its members. (Cagle 2005)

In that sense, because SVG is an open standard, it is open to any party to

produce tools, content or other services based on this format. To demonstrate

this concept consider the following ways in which SVG is already used:

• Adobe Illustrator can load and save artwork in SVG format with little lost

information;

• Ikivo Animator can be used to add animation effects to artwork, such as

that produced by Adobe Illustrator;

• Microsoft Visio can save diagrams in SVG format;

• The Open Clip Art Library contains a catalogue of thousands of Public

Domain clip art images, most of which are stored in SVG format;

• Apache Batik can be used to view SVG files and convert them into bitmapped

representations.

In fact this list could go for several pages, particularly if we were to include the

many open-source diagramming products that export SVG or use SVG as their

native file format. The important point however is that in each case entirely

independent vendors are producing the products that use SVG. This is a key

advantage of using an open standard. Many have pointed out the benefits of

openness as a risk management strategy to avoid vendor lock-in (Aulenback 2004,

Bunker n.d.).

Another benefit of an open standard is that no one party has complete control

over the development of the specification. This reduces the risk somewhat that

the standard will be unexpectedly abandoned.

CHAPTER 1. BACKGROUND 10

Some may argue that all this talk of openness is too idealistic; the sort of stuff

touted by academics and bright-eyed teenagers but lost on the business world.

However, we need look no further than the Web to see that this is not the

case. Clearly much of the reason behind the success of the Web is that so many

independent parties have been able to develop tools and content for the new

medium and have been able to influence the direction of standards such as HTML.

As a result of this growth, many new companies from tool vendors to search

engines have emerged and prospered.

All this is not to discredit the Flash (SWF) file format. It has achieved great

popularity because it meets an important need on the Web. However, for those

developing for the Web platform with all its associated XML-based standards,

SVG is a more natural fit. Its grounding in XML makes it more scalable and

flexible in such solutions and its status as an open standard provides room for

new tools and content to be developed by independent parties.

1.5 Other alternatives to SVG

So far we have discussed some of the current trends in the development of the Web

as a platform for application development and we have seen how SVG attempts

to fill an important gap in that platform. It should be noted that SVG is not

the only technology seeking to address this gap. We have already considered

Macromedia Flash but there are others too and at least one is worth mentioning

here.

Disappointed with the direction of new Web standards, several developers of

Web browsers formed a new standards body in 2004 named the Web Hypertext

Application Technology Working Group (WHATWG). The charter of this group

is to create technical specifications to “address the need for one coherent de-

velopment environment for Web applications . . . in mass-market Web browsers”

(WHATWG 2004). One product of this group is the Web Applications 1.0 spec-

CHAPTER 1. BACKGROUND 11

ification (WHATWG 2005) which includes a canvas element for direct graphics

programming.

The canvas element provided by the Web Applications specification allows a

Web developer to issue graphics commands using a scripting language in much

the same way a procedural graphics interface provided by a graphics library or

operating system might work.

Although the programming interface for the canvas element has some similarities

to SVG it has a different target usage to SVG. Because drawings on a canvas

element are defined using a graphics commands inside a scripting language, they

cannot be authored in the same fashion as SVG because an authoring program

would need to be able to understand the scripting commands which may be

interleaved with any combination of programming control structures. The canvas

element is not intended to be used in this way however; rather, it is intended

for producing “visual images on the fly” (WHATWG 2005) such as for games

or graphs. For such situations, this mode of interaction and the much simpler

feature set of the canvas element make it a suitable choice, but for development

of Web applications, SVG is often a more suitable candidate.

1.6 State of the SVG-enabled platform

I hope that the purpose of SVG is now clear. What remains then is to see how

this theory and speculation translates into practice. We have already seen several

examples of SVG in use in real applications but the rich Web platform, enlivened

by SVG is still yet to emerge.

Adobe have produced a plug-in to allow SVG to be viewed within a Web browser

but this plug-in is not yet widely distributed enough to make SVG common-

place on the Web. Furthermore, as many have pointed out, there is a distinct

disadvantage to implementing SVG as a plug-in component.

Rowley, Morris, Watt & Fritze (2005) note that “plugin content appears ‘in a

box’ both in visual terms and from the point of view of the DOM”. That is to

CHAPTER 1. BACKGROUND 12

say plug-ins typically do not integrate well with other graphical elements or with

the Web browser’s object model. This second point is particularly pertinent in

the context of building a platform for application development. Plug-ins also

present problems with regards to security, installation difficulties and platform

availability (Cagle 2005, Rowley et al. 2005).

For this reason many parties are pinning their hopes for SVG on more integrated

solutions. One example of this is Mozilla.

1.7 Mozilla

In 1998, Netscape Communications decided to release the source code to the

Netscape Web browser and allow outside parties to contribute to its development.

The name Mozilla, originally the codename for the Netscape Web browser and

its Godzilla-like mascot, was used as the name for the collection of source code

and also the project that surrounded its development.

Over time the proportion of contributors outside Netscape to those within grew

until the Mozilla project could carry on in its own right, independently of Netscape

(who had then been bought by AOL). In 2003, when AOL laid off several em-

ployees involved in developing Mozilla, the Mozilla Foundation was formed to

oversee the future of the Web browser (Marson 2005) and in August 2005, the

Mozilla Corporation was launched as a taxable subsidiary of the Mozilla Foun-

dation (mozilla.org 2005b).

Since Netscape released the source code in 1998 it has come to be used not only

for the Netscape Web browser but also for the Firefox and Camino Web browsers;

the Thunderbird email client; the Mozilla Application Suite that integrates Web

browsing, email and other functionality; and various other applications including

several calendaring applications. For this reason, the term Mozilla is now often

used to refer to the codebase from which several applications are drawn rather

than a particular Web browser.

CHAPTER 1. BACKGROUND 13

In considering the future of the Web platform, Mozilla is a particularly interesting

case for a number of reasons.

Firstly, Mozilla is a well-established platform providing rigorously tested sup-

port for many Web standards including HTML and XHTML, CSS, DOM, RDF,

ECMAScript, XSLT, Namespaces in XML, MathML, SOAP and XPath to name

just a few.

In addition to the standards supported by Mozilla, the Mozilla project has pro-

duced several new technologies that are particularly relevant to the field of Web

application development. Such technologies include the XML Binding Language

(XBL) which has been submitted to the World Wide Web Consortium (W3C)

for standardisation and the XML User Interface Language (XUL). XUL provides

developers with the means to define user interfaces for their Web applications

using similar components to those found in desktop applications.

Secondly, Mozilla is a well-established codebase designed to work with a broad

range of platforms and compilers (Williams 1998). As a result, applications

supported by Mozilla, can be run on nearly any computer.

Finally, and perhaps most importantly, the Mozilla-based Firefox Web browser

is growing rapidly in popularity. It is hard to report exact figures, particularly as

they will quite quickly be out of date, but it is certainly true that after Microsoft

Internet Explorer, Mozilla Firefox is the second most popular Web browser in

use today.

All of these factors make Mozilla a very attractive platform for Web application

development, and a platform that would be even more attractive were it to sup-

port SVG. For this reason, since 1999 a small number of developers have been

seeking to bring SVG to Mozilla. With the anticipated release of Firefox 1.5 in

late 2005, SVG will finally arrive in Mozilla. However, this will not be a full im-

plementation of the entire 700-page SVG 1.1 specification, but rather something

like “SVG Full 1.1 minus filters, declarative animation, and SVG defined fonts”

(Rowley et al. 2005). Of course, a full implementation is planned, perhaps some

time into 2006 (Rowley et al. 2005). It is the goal of my Capstone project, to

contribute to that effort.

CHAPTER 1. BACKGROUND 14

Before concluding this chapter it is necessary to describe one final trend in soft-

ware development in order to provide a more complete picture of the technological

environment of this project. Since at least 2004, the Mozilla project has been

developing a runtime environment for more traditional desktop applications that

make use of many of the components developed as part of the Mozilla codebase.

This runtime environment, known as XULRunner, will eventually form the plat-

form upon which Mozilla’s current products such as Firefox and Thunderbird are

based. However, this platform could conceivably be used to develop all manner

of desktop applications. In practice however, such applications will typically be

those that will benefit from the many Web-related components available in the

Mozilla codebase and its cross-platform foundations.

Some have compared XULRunner to Microsoft’s .NET Framework (McFarlane

2003a) whilst others have been quick to point out the differences in focus of the

two platforms (Markham 2005, Deakin 2003). If such a comparison is permitted

however then SVG’s Microsoft-based counterpart is the Extensible Application

Markup Language (XAML). Indeed, many have compared these technologies but

it is not useful for us to do so now and I will return to this topic only at the

conclusion of this report.

Until now when I have referred to the Web platform and Web applications I have

had in mind those applications that run entirely inside a Web browser and poten-

tially any Web browser at that, rather than being restricted to a Mozilla-based

browser. Quite clearly, XULRunner is directed toward another kind of applica-

tion. Therefore I refer to the platform provided by XULRunner as the Mozilla

platform rather than the Web platform. The Mozilla platform addresses an im-

portant gap but my focus in this project is in strengthening the Web platform.

In a preface to a collection of articles discussing SVG titled “Correcting the

great mistake” Parisi (2004) emphasises that the purpose of technologies such

as SVG is to communicate information. However in this chapter I have focused

on the potential of SVG to be used as part of the Web platform, that is, for

application development. There are other uses for SVG however. It may open

CHAPTER 1. BACKGROUND 15

up new workflows in a desktop publishing environment or it may simply by used

to display visual information on the Web in a more natural manner. However,

to some degree such scenarios are already possible with existing technologies.

SVG may be a better or more uniform way of achieving these results, but if SVG

actually provides anything new to the fields of computer graphics and software

development then I believe it is the ability to integrate graphic elements as first-

class citizens amongst a host of other technologies used to develop applications for

the Web. By contributing to the development of SVG in a popular Web browser

this Capstone project attempts to further the realisation of a richer platform for

Web application development.

Chapter 2

Project outline

Of all the features missing from Mozilla’s SVG codebase at the time when I

first began this project, three were continually raised as the big-ticket items.

These were declarative animation, filters and SVG-defined fonts. Of these, I have

chosen to implement declarative animation for reasons that I will explain later

in this chapter but before I do so, it is necessary to understand what declarative

animation is and why it was included as part of the SVG specification.

2.1 Declarative animation

The name “declarative animation” suggests a particular type of animation, and

this is because it is possible to produce animation effects in SVG using two

distinct techniques.

The first animation technique involves manipulating SVG objects over time using

a scripting language to access the SVG objects via the SVG DOM—an API for

SVG documents. This is similar to the way in which animation is performed

in many desktop applications. This mode of animation is often referred to as

scripted or DOM-based animation.

The second technique by which SVG documents may be animated requires that

the parameters of animation be described as part of the SVG document, that is,

16

CHAPTER 2. PROJECT OUTLINE 17

they are “declared” as part of the document. The model and syntax used for

declaring such animations in SVG belong to another standard, Synchronised Mul-

timedia Interaction Language (SMIL—pronounced “smile”) Animation (World

Wide Web Consortium 2001). For this reason this type of animation if often

referred to as declarative or SMIL animation.

To appreciate the difference between these two modes of animation, consider a

simple scenario where a circle is to be moved to the right over two seconds. The

difference between these two modes is shown in Figures 2.1 and 2.2.

<?xml version="1.0" standalone="no" ?>

<svg xmlns="http://www.w3.org/2000/svg" width="200px" height="100px"

onload="animate()">

<script type="text/ecmascript">

<![CDATA[

function animate()

{

var circle = document.getElementById("target");

circle.cx.baseVal.value++;

if (circle.cx.baseVal.value < 150)

setTimeout("animate()", 20);

}

]]>

</script>

<circle id="target" fill="red" stroke="black" cx="50" cy="50" r="40"/>

</svg>

Figure 2.1: A simple SVG document using DOM-based animation.

There are advantages of using each approach. For the first case, animation using

the SVG DOM, the author is not limited to a particular set of animation features

but can achieve any effect possible using the scripting language and the SVG

DOM. Some Web authors are already familiar with this style of interaction and

so they do not need to learn any new techniques to provide animation using this

method.

There are, however, many disadvantages to this approach. First of all, authors are

CHAPTER 2. PROJECT OUTLINE 18

<?xml version="1.0" standalone="no" ?>

<svg xmlns="http://www.w3.org/2000/svg" width="200px" height="100px">

<circle fill="red" stroke="black" cx="50" cy="50" r="40">

<animate attributeName="cx" from="50" to="150" begin="0s" dur="2s"/>

</circle>

</svg>

Figure 2.2: A simple SVG document using declarative animation.

forced to solve the same problem over and over again, namely, that of writing an

animation loop. For simple animations this is trivial although the code snippet

provided in Figure 2.1 is a poor example as it fails to account for time taken

within the loop itself.1

A second disadvantage of the scripted approach is that it requires programming

code to be written. This limits the ability of non-programmers to create anima-

tions but not entirely as some tools for Web development are able to produce

small scripts to address common problems.

The most significant shortcoming of animating with script and the SVG DOM

is that such animations are opaque to the computer. Without actually running

the script, the computer will not be able to determine what it does. Scripted

animations cannot be manipulated using an authoring application in any kind of

intuitive manner.2 King, Schmitz & Thompson (2004) add, “the use of script or

code is problematic in data-driven content models based upon XML and associ-

ated tools”. As an example, it would be very difficult to produce an animation

script from some information in an XML data store by using XSLT.

Declarative animation seeks to address these problems. As shown in Figure 2.2

the parameters of declarative animation are laid bare as regular XML attributes.

This enables such animations to be edited by any number of applications so that

1For a slightly more sophisticated example, see section 19.3 of the SVG 1.1 Specification.
2Although this is generally true, it may be possible for an application to use careful variable

naming, or special comments so that it is able to re-interpret the script it has produced but such
an approach is essentially a primitive form of declarative animation anyway and the animation
produced will not be able to be edited by other applications.

CHAPTER 2. PROJECT OUTLINE 19

users are not tied to a particular application or a particular work-flow. Because

any application can understand the animation, alternative representations are

possible. For example, it may be possible to produce an application that draws

a timeline of the animations defined for a particular SVG graphic. In fact such

a timeline could even be drawn in SVG using an XSLT transformation as shown

in Figure 2.3.

XSLT Circle 1

Circle 2

SVGSVG

Figure 2.3: A possible work-flow where XSLT is used to transform an SVG
document animated with SMIL into a static timeline of the same animation,
drawn using SVG.

Declarative animation provides a set of common animation features such as in-

terpolating values and coordinating otherwise independent transitions. Provided

that these features correspond to a Web author’s requirements for an animation—

and standards such as SMIL Animation make every effort to ensure this is the

case—then it is also likely to be significantly faster and easier to produce anima-

tions using declarative syntax rather than script.

The standards body responsible for most of the standards in use on the Web today

including SVG is the World Wide Web Consortium (W3C). The grand vision of

this organisation’s founder, Tim Berners-Lee, is the Semantic Web (Berners-Lee,

Hendler & Lassila 2001). This vision is based on giving meaning to the data

that exists on the Web so that computers may act on the data and combine it

more intelligently. Scripted animation hides the semantics of the animation from

the computer, whereas declarative animation makes the animation parameters

visible to the computer for the purpose of creating new animations from other

data, manipulating the animation or providing alternative representations of the

animation.

CHAPTER 2. PROJECT OUTLINE 20

We have already mentioned one obvious disadvantage of declarative animation:

the author is limited to the features provided by the animation description lan-

guage. Although SMIL Animation provides a very large feature set to content

authors there will still be cases where these features are not sufficient and script-

ing is required. King et al. (2004) acknowledge this situation and propose a sort of

middle-ground combining the two approaches by using functional programming

together with SMIL Animation.

The advantages of declarative markup versus scripting are still under discussion.

For example, prior to a workshop on Web Applications and Compound Docu-

ments the World Wide Web Consortium (2004) posed the question, “How much

of a Web application should be declarative? How much in script?”.

It should at least be clear that even if a declarative approach is not always the

most appropriate choice it is not redundant either. Because SMIL animation

offers Web developers the benefits I have described it is important that it be

implemented in Mozilla. Furthermore, even the most limited subset of the SVG

specification defined by the W3C, SVG 1.1 Tiny, includes declarative anima-

tion. Therefore, in order for Mozilla’s SVG implementation to be able to claim

conformance to any SVG profile, declarative animation must be implemented.

2.1.1 Features of SMIL Animation

SMIL Animation is the name of the standard upon which SVG’s animation con-

structs are based. This standard defines the syntax and semantics of these ele-

ments and is a subset of the SMIL 2.0 specification.

Schmitz (n.d.) describes how this standard can be analysed as consisting of two

separate models.

The first model is the timing model. This model includes all the features relating

to defining and triggering animation intervals and sampling during these intervals.

Some of these features include:

CHAPTER 2. PROJECT OUTLINE 21

• The ability to define animations as starting relative to when a document is

loaded or to a real clock value such as 10pm on 5th February 2006.

• The ability to define animations as starting relative to one another. For

example, element A might be defined to start five seconds after element B.

This is often referred to as syncbase timing.

• The ability to define animations to start relative to events such as keyboard

presses, mouse clicks or events generated by programming scripts.

• The ability to define multiple intervals for an animation such that it can

be played several times based on different conditions.

• The ability to constrain animation intervals. For example, an animation

may be defined to stop when a mouse is clicked, when another animation

starts or after some maximum amount of time has expired.

• The ability to specify if and how an animation should repeat.

• The ability to seek to a point in the animation using hyperlinks.

• The ability to define if an animation continues to affect its target after it

has completed or if the target is reset.

• The ability to manipulate animations using DOM interfaces and receive

feedback on animation status using DOM events.

The second model we can consider in approaching SMIL Animation is the anima-

tion model. Whereas the timing model deals with intervals, times and sampling,

the animation model deals with the actual animation values. This includes inter-

polating between animation values, combining values for overlapping animations

and applying the animated values to the target. The features of this model

include:

• The ability to specify how interpolation is performed between key animation

values. For example, the values could be interpolated in a linear fashion

over time, or by using a function that creates an ease-in, ease-out effect.

CHAPTER 2. PROJECT OUTLINE 22

• The ability to define animation values using one of several notations. The

animation may be defined as proceeding from one value to another or as

following a list of values or as converging on some final result independent

of the intermediate values.

• The ability to adjust the time at which values are set so that they are not

required to be evenly spaced.

• The ability to combine independent animations targeting the same prop-

erty. The priority of each animation is determined and then each animation

can define if it adds to lower priority animations or replaces them.

• The ability to define if repeated animations build upon the previous itera-

tion or start afresh.

• The ability to animate an object along a path.

• The ability to animate between colours.

In addition to these animation model features, SVG adds an additional element

to provide support for animating transformations so that any object can be trans-

lated, scaled, rotated, and skewed over time.

Compared to SMIL 2.0, the most notable difference is that SMIL Animation

lacks time containers which allow timing elements to be grouped and then syn-

chronised. The timing model used in SMIL Animation consists of only a single

time container.

I will discuss some of these features in more detail later but for now it is sufficient

to be aware of the possibilities provided by SMIL Animation.

2.2 Declarative animation as a university project

I have described why I consider declarative animation to be important to Mozilla.

For these reasons I have chosen to implement this feature for my Capstone

CHAPTER 2. PROJECT OUTLINE 23

project. Declarative animation also makes a suitable project because parts of

it entail the sort of algorithmic complexity that is difficult to develop effectively

in a distributed manner.

My purpose in conducting this project is to make a valuable contribution to the

ongoing effort to support for SVG in Mozilla. Although animation is only one

chapter amongst many in the SVG 1.1 specification much of the semantics of

the model described in this chapter are properly defined in the separate SMIL

Animation specification. The animation features of the SMIL Animation spec-

ification are not trivial and a complete implementation of these features is well

beyond a Capstone project. The scope of this project is therefore limited to a

subset of the animation features of SMIL Animation.

In determining the subset of SMIL Animation to implement I have chosen to focus

my efforts toward developing a useful architecture that is suitably integrated with

the existing codebase such that it could be accepted into the Mozilla project.

My reason for focusing on a useful architecture is to assist other developers. I

have mentioned that SMIL Animation is not trivial and having reviewed this

specification I would like to embody my understanding by developing and imple-

menting a suitable architecture. My hope is that this will allow other developers

to implement specific features without requiring them to be familiar with the

SMIL Animation specification in its entirety.

In implementing this project I will be aiming to produce code such that it could be

integrated into the existing codebase. It is quite a different matter to implement

a feature and to integrate that feature, especially when the target is a codebase

as complex as Mozilla.

Integrating in this case includes re-using already existing services, creating the

necessary hooks in existing components, producing objects in the appropriate

scope, modifying existing objects to inter-operate with the new functionality and

factoring in the performance and threading requirements of the target. This work

also includes discussing implementation strategies with interested parties and

producing appropriate documentation such that other developers can continue

the work.

CHAPTER 2. PROJECT OUTLINE 24

Please be aware that in my original Capstone project proposal I emphasised that

having my code accepted into the Mozilla codebase would not be a requirement of

this project. This is because the approval process is beyond my control and can

take many months, particularly for a large feature such as I am implementing

and I cannot expect this process to be expedited for the sake of this project.

Therefore, although I have every expectation that the code I produce will at

some stage become part of the Mozilla codebase, this is not expected to happen

prior to the submission of this project.

Chapter 3

Engineering process

“Each problem that I solved became a rule which served afterwards

to solve other problems.” — Rene Descartes (1596–1650), Discours

de la Methode

Over the span of this project I have had sufficient opportunity to consider and

refine the processes that aided my work. In this chapter I will comment on some

of these processes. I will also refer to the processes used by the Mozilla project

to which I have been contributing and more generally, the processes common to

many open-source projects. I hope that these comments will broaden the value

of this discussion.

3.1 Process influences

Before describing the particular processes I have selected for this project I would

like to comment on the major sources from which they are drawn. Without

identifying these influences the processes I describe might otherwise seem to be

a mélange of buzzwords and whimsical ideas rather than a critical distillation of

established practice.

25

CHAPTER 3. ENGINEERING PROCESS 26

The two sources that have most influenced my approach to this project are agile

software development and open-source software development, which, as we shall

see are quite complementary in their values.

3.2 The agile approach

In recent years the intersection of several emerging software development pro-

cesses such as Extreme Programming and Feature-Driven Development have

come to be collectively referred to as agile methodologies. The common features

and values of these approaches are captured in the Agile Manifesto (Figure 3.1).

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Source: Beck, Beedle, van Bennekum, Cockburn,
Cunningham, Fowler, Grenning, Highsmith, Hunt, Jeffries,
Kern, Marick, Martin, Mellor, Schwaber, Sutherland &
Thomas (2001)

Figure 3.1: The Agile Manifesto.

The most appealing characteristic of this approach for my project is the value

placed on responding to change. When uncertainty is high, as it is for this project,

change is inevitable. The agile methodologies each provide different answers to

the problem of change but in general each describes lightweight processes that

CHAPTER 3. ENGINEERING PROCESS 27

can be easily adapted to new requirements, invalidated assumptions or an altered

environment. As a result I have borrowed many of my processes from this school

of thought, but particularly Beck’s (2000) Extreme Programming.

3.3 Open-source development

In contributing to a project such as Mozilla it is helpful to understand the culture

surrounding the project. For Mozilla the culture is quite the same as for any

open-source project. Himanen, Torvalds & Castells (2002) describe this culture

at length under the title “The Hacker Ethic”. In their analysis, the culture in

such projects resembles more closely the academic ethos than the values common

in a corporate environment. For example, open-source projects typically feature

a high degree of transparency. This is true not only with regards to the program

source code which gives this sort of development its name, but also with regards

to design discussion, defect tracking and status reporting. One example of this

is that anyone can view nearly any defect filed for the Mozilla project but the

same cannot be said of its closed-source counterparts.

Himanen et al. (2002) compare the transparency of the open-source culture to the

academic tradition of sharing the results of one’s research for others to scrutinise

and use. Further similarities can be drawn between these two cultures. For

example, in each case the contributors are generally motivated by a genuine

interest in their work and a desire to attain the regard of their peers rather

than by financial incentives. Consequently in both circles scholarship is highly

regarded.

This open-source culture has been another influential factor in the processes I

have adopted for this project. For example I have deliberately tried to ensure

transparency in my status reporting and design work.

In my opinion agile software development is well suited to the open-source culture.

Open-source projects typically involve physically disparate contributors following

different work patterns in different timezones. In such an environment it would

CHAPTER 3. ENGINEERING PROCESS 28

be difficult to enforce the sort of formality required to follow, for example, a

process based on the waterfall model but it is much easier to manage using a

lightweight process that is adaptable to change.

There is also evidence of the complementary relationship between agile methods

and open source in the number of open-source products supporting these meth-

ods. For example, what is arguably the cornerstone of agile development in Java,

JUnit, is an open-source product. Likewise, the Eclipse IDE which contains per-

haps the best support of any IDE for refactoring—a technique common in agile

methods—is open source as well.

This complementary relationship is not surprising. Both hackerism—Himanen

et al.’s (2002) term for the dominant culture of the open-source world—and agile

methods both put the emphasis of software development back on programming.

3.4 Process overview

In selecting a software process there can be many contributing factors to consider

such as the volatility of the requirements, the abilities of the project team, the

availability of representative users, and the characteristics of the project itself

(Futrell, Shafer & Shafer 2002, pp. 146–152). For this particular project however

the dominating factor I have used in selecting a process is risk management.

The project I have undertaken involved an incredibly large degree of uncertainty.

At the outset I had only the faintest notion of the technologies involved and while

it is normal to learn new technologies throughout a project the sheer number and

complexity of technologies involved in this particular project made it critical to

take an approach that would allow me to manage these unknown quantities.

Based on this consideration I elected to follow an iterative approach to develop-

ment. By doing so I hoped to guard against the risk of being unable to deliver

a demonstrable product at the completion of the project. Using an iterative ap-

proach I could be sure that by the completion of the first iteration I would either

CHAPTER 3. ENGINEERING PROCESS 29

have a demonstrable but limited product, or the realisation that the project was

infeasible and sufficient time to plan an alternative course.

All agile methods follow an iterative approach of some sort. In Feature-Driven

Development iterations are based around the features to be delivered. In Ex-

treme Programming stories and tasks form the basis of iterations. In these cases

the purpose of an iterative approach is to deliver value to the customer as quickly

as possible and receive feedback to incorporate into the next iteration. My pur-

pose for adopting an iterative approach however was largely a risk management

measure although it is also true that I was able to receive early feedback on my

work which I incorporated into subsequent revisions.

This approach of managing risk through iteration is most similar to Spiral De-

velopment as defined by Boehm (2000). Under this process model risk analysis

is the first step in each iteration and determines the effort and detail required

for each activity in the iteration and even the activities themselves. For this

reason Spiral Development is defined as a process model generator because the

activities within each iteration are not determined in advance. It is a sort of

“meta-process”.

Based on these ideas I developed the approach shown in Figure 3.2. However,

in keeping with Spiral Development I re-assessed the risks at each iteration and

adjusted the activities of the iteration accordingly. For example, for reasons I

will explain shortly, after the first iteration I was more confident of my design

than I anticipated to be and scarcely performed any design work in subsequent

iterations.

With regard to the process outlined in Figure 3.2 the requirements activities may

seem surprisingly under-represented. This is deliberate. The requirements for

this project entail little risk as they are well-defined in two formal specifications,

namely SVG 1.1 and SMIL Animation. They are complex but there is little

risk that they will change throughout the course of the project. Therefore it

is sufficient to study the requirements once up front rather than revising them

each iteration. However, I have scheduled the two prototype iterations prior to

requirements analysis so that I can better estimate the amount of effort required

CHAPTER 3. ENGINEERING PROCESS 30

5	 4	 3	 2	 1 Design

First prototype

Design

Second prototype

Design

Requirements
analysis

Write
tests

Code

Design Write
tests

Code

Code

Write
testsDesign

Risk
analysis

 Risk
analysis

 Risk
analysis

 Risk
analysis

Performance
tuning

Quality
 review

Iteration

Publish

Publish Publish
Publish

Figure 3.2: The initially envisioned spiral process.

CHAPTER 3. ENGINEERING PROCESS 31

by each requirement during analysis and planning for each iteration.

The ‘Publish’ activity at the end of all but the first iteration refers to the process

of posting the results of my work so that others could view my progress. This step

allowed me to receive feedback on my work, forced me to keep the product and

code in a demonstrable state and by being transparent in this manner I hoped

to ensure the work I was doing was not being duplicated by another contributor.

One minor discrepancy between my process and traditional Spiral Development is

that I have replaced the formal anchor milestones defined by Boehm (2000) with

milestones established with my supervisor as this seemed to be more appropriate

for a project of this scope.

With this iterative approach based on Spiral Development I developed specific

processes for each of the project activities. The remainder of this chapter outlines

some of these particular activities.

3.5 Project familiarisation: Tackling a “first bug”

Having been warned that I would require at least six months to learn XPCOM—

one of the underlying technologies used in the Mozilla codebase—and that I

should find out what was involved before committing to such a project, my first

step, even prior to developing the process I have just outlined, was to select a

simple bug in the Mozilla bug database that I could use to learn more about

the codebase and the feasibility of this project. This is now the recommended

approach for new contributors and a list of suitable “first bugs” has been compiled

(mozilla.org 2005a).

The bug I selected related to compositing SVG graphics against the background

Web page (bug #134708). Fixing this bug, although straightforward, required

several weeks of investigation and introduced me to some of the SVG architec-

ture such as the different rendering back-ends involved. Taking this step was

also useful in becoming familiar with the individual contributors involved in the

project and the processes used.

CHAPTER 3. ENGINEERING PROCESS 32

3.6 The first prototype

Even after submitting my first patch I did not have sufficient understanding of the

problem to be able to accurately plan the project or comprehend the requirements

captured in the relevant specifications. To further reduce the risk involved in this

project I employed two iterations of throw-away prototyping.

For the first prototype I set the target of moving a box across the screen regardless

of how many design rules I had to break or nasty tricks I had to employ in

the process. This is perhaps somewhat similar to the motto quoted by Beck

(2000, p. 134) “Make it run, make it right, make it fast.” Here the emphasis

was on reducing risk by proving that each of the steps involved is possible and

developing a better understanding of the problem domain. ‘Making it right’

would be attempted later when I could better comprehend the problem.

In this first prototype all animation parameters were hard-coded and could not

be easily altered to produce different animations. Nevertheless it proved to me

that that it would at least be possible to produce some minimal animation and

helped me to understand some of the more uncertain parts of the design such as

managing the animation timer and initiating redrawing.

3.7 The second prototype

Following on from the first prototype I listed the limitations of the code I had

written and identified the areas of uncertainty to address in the next prototype.

For this second prototype I focused on producing a model that was more generic,

removing many of the hard-coded parameters and replacing them with some

primitive parsing support and generic handling. In producing this prototype I

was forced to consider ownership and lifetime issues more closely. I also took one

of the suggestions from the Mozilla SVG developer community regarding storage

of animated values and included this in my prototype.

During development of the second prototype I frequently encountered situations

where after a long compile the animation would fail to run at all. After lengthy

CHAPTER 3. ENGINEERING PROCESS 33

debugging sessions and several re-compiles I would correct the problem and ani-

mations would run again. Sometimes however this process would take an entire

week. These problems would typically occur because I had failed to understand

some part of the Mozilla codebase. In order to reduce the amount of time lost in

this way I changed my approach in favour of making more incremental changes

between successive compiles and committed to keeping the prototype in a state

that is always demonstrable. Achieving this often required planning each change

such that every step could be tested.

Fowler’s (1999) work on refactoring is based on such an idea. Fowler breaks down

code restructuring into a catalogue of common changes and for each one describes

the steps involved. After applying such a set of steps, the structure of the program

may be improved whilst leaving its behaviour unchanged. However, Fowler does

more than just list common steps, he also gives valuable practical advice on

when to apply these changes and argues for greater tool support in this area,

something which I expect could provide significant benefits to programmers. This

has been taken up in some areas such as the Eclipse IDE’s refactoring support for

Java. However, other languages are less accommodating of automated refactoring

support. For example, the C++ preprocessor provides many possibilities for

confusing such tools, particularly in projects as complex as Mozilla.

This formal approach to modifying the source code such that after each collection

of steps the product is testable and demonstrable was the basis for my approach

in the second prototype.

3.8 Requirements analysis

Following on from prototype development I began a detailed analysis of the re-

quirements contained in the SVG and SMIL Animation specifications. Combing

through these specifications I collated the requirements in a database described

in Appendix A. My original intention was to be able to link the requirements

to test cases and test results in order to ensure each requirement was properly

addressed. To my disappointment I discovered that most of the freely available

CHAPTER 3. ENGINEERING PROCESS 34

products for managing requirements were very weak in the area of traceability

to test cases.

I set about writing my own database but ultimately this proved too large an

undertaking for this project and I could only afford time to produce the require-

ments database with very basic links to test cases and not the strict traceability

I had envisioned. It is surprising to me that such tools are not already available,

particularly when there is so much potential for a tool to provide benefits such as

automated regression testing and enforcing traceability of requirements to test

cases.

Appendix A contains a report from this database.

3.9 Design strategy

Based on the requirements database and ideas I had developed through the two

prototypes I produced an initial design. After revising this design several times

I considered existing implementations.

During this stage I reviewed Schmitz’s (n.d.) design proposal for incorporating

SMIL Animation into another SVG implementation: Apache Batik. This de-

sign contained many useful ideas and so I synthesised my current design with

Schmitz’s. The design as I have implemented it is closer to Schmitz’s proposal

than my original plans. One reason for this is because Schmitz’s experience in im-

plementing SMIL Animation in other environments has allowed him to produce a

more detailed and mature design than I was able to with my limited experience.

Another reason my design closely resembles Schmitz’s is because I deliberately

chose to follow Schmitz’s design closely so that others who might be familiar

with Schmitz’s proposal could better understand my work. Nevertheless I have

deviated from Schmitz’s design in several areas which I will describe in Chapter 5.

Typically agile methodologies shy away from detailed up-front design. This is cer-

tainly true for Extreme Programming where Beck promotes “designing through

CHAPTER 3. ENGINEERING PROCESS 35

refactoring” (Beck 2000, p. 107). In retrospect I am not certain that this approach

would be appropriate for the particular case of SMIL Animation. My experience

was that SMIL Animation describes many peculiar edge cases and features that,

although appearing quite unassuming on the pages of the specification translate

into major design issues. One example is hyperlinking. Although hyperlinking is

only a minor feature and receives little attention in the specification implement-

ing this feature invalidates assumptions that might otherwise be made about the

direction of time in the model.

While it would be possible to cope with many of these cases by refactoring as

they arose, it would result in excessive rework. In this case it is better to have a

thorough understanding of the specification and develop a suitable architecture

to handle the full complexity of the specification and then refine this through

refactoring.

3.10 Test strategy

In order to test correct functioning of the implementation, testing was performed

on several levels.

3.10.1 Unit tests

Early in the project I had expected to do the bulk of my testing through care-

fully design SVG test cases. These test cases would be supplemented by unit

tests to cover some specific cases such as verifying correct parsing. However,

during implementation I noticed compile times had increased, perhaps because

of changes elsewhere in the codebase. This forced me to rely more heavily on

unit testing as it was too inefficient to re-link the entire layout module each time

I made a change. With unit testing however I needed only re-compile the files I

had changed and link against them.

This change in approach worked to my advantage as I quickly built up a suite of

automated test cases that I could run every time I made a change giving me more

CHAPTER 3. ENGINEERING PROCESS 36

confidence that each time I made a change I was not adding a regression. Both

Beck (2000, p. 115) and Fowler (1999, p. 89) describe the value of automated

unit tests. Beck in particular extols the benefits of this approach for boosting

the programmer’s confidence. This approach also greatly improved the quality

of the code I produced as I frequently produced unit test cases that revealed real

defects in the code. A selection of these test cases are included in Appendix B.

In order to isolate components for effective testing I found the approach of using

mock objects to be very helpful. Mock objects are a formalisation of an approach

that is used by programmers for testing interdependent components by substitut-

ing a dependent component with another component that implements the same

interface (Mackinnon, Freeman & Craig 2000). This substitute component (the

“mock object”) can then verify it is called as expected and can produce input

to force the test component to traverse certain paths in the code such as error

handling code which might otherwise go un-tested.

Frameworks for simplifying mock object development are now starting to appear

alongside unit test frameworks although I chose not to use frameworks for either

case because this would mean any such tests would be difficult to share with

other developers and would certainly be unsuitable for submission to the Mozilla

project.

I consider it would be very beneficial to be able to include these unit tests along

with my submission to the Mozilla project so that other contributors can ensure

that their changes do not introduce regressions and as another source of docu-

mentation. However, it seems that this is not common practice in the Mozilla

project where unit tests are only included for core functionality such as XPCOM.

It may be unreasonable to expect other contributors to also maintain the unit

tests when they make changes but I do not think so.

3.10.2 SVG test cases

In addition to these unit tests I produced several SVG test cases. These cases

are necessary because it is difficult to test the bindings from the SMIL model to

CHAPTER 3. ENGINEERING PROCESS 37

the SVG elements using unit testing because of the many dependencies of SVG

on other parts of the codebase. The focus of the SVG tests cases is therefore on

these bindings and also on providing further confirmation that the animation is

behaving as expected.

The SVG tests cases have been arranged in a manner so that they can be run by

alternative SMIL implementations such as the Opera Web browser or Adobe’s

SVG Viewer. This allowed discrepancies between implementations to be iden-

tified which in some cases caused me to reconsider my understanding of the

specifications.

Also, by publishing these test cases I was able to receive feedback on their ac-

curacy and in one case I revised the test cases after one reviewer challenged my

understanding of one area of the SMIL Animation specification.

3.10.3 Public test suites

The SVG working group and the World Wide Web Consortium have been criti-

cised for providing only a small test suite for such a large specification as SVG.

Fortunately a much larger test suite is available for SMIL. However, much of the

SMIL test suite cannot be readily applied to a project such as this. The reasons

are largely technical. For example, most of the test cases do not use SVG as the

host language and the test suite is not strict in its use of namespaces. These

limitations could be overcome by converting the test suite to a more suitable

form but this is an arduous task and has not yet been done. It is also not clear

if the result of such work could be re-published for others to use.

For the purposes of this project I converted some of the simpler test cases to a

form that was useful for testing and used these to verify my work.

In addition to the test cases I developed for this project several others have de-

veloped their own test suites. Hoffmann (2005) presents a particularly thorough

test suite along with test results from many current SVG viewers. It is my view

that these efforts are of great value to the SVG community, more so than any

CHAPTER 3. ENGINEERING PROCESS 38

one implementation of the specification. Interoperability between implementa-

tions is paramount if the Web is to succeed as an application platform. If Web

authors spend the bulk of their time attempting to navigate a course between

areas of broken behaviour in differing implementations, the Web platform begins

to lose the appeal it might otherwise hold as a rapid application development

environment. Furthermore, it is often the more advanced and attractive features

of the specification that suffer because they are not part of the subset of features

fully supported in all implementations. These features are therefore effectively

useless and this trend holds back the growth of the Web platform into a more

sophisticated framework for application development.

These issues confront all open standards for the Web, however for some other

standards specific test suites have gained prominence and taken on the status of

un-official measures of the quality of an implementation. For example, the Web

Standards Project (WaSP) have created the Acid2 test to test a Web browser’s

implementation of various Web standards such as HTML4 and CSS1 (WaSP n.d.)

and is often used as a benchmark of the compliance of these parts of a browser’s

layout engine. SVG would benefit from the development of further test suites or

from collecting the various test cases from around the Web in a central location.

3.11 Communication

I have already mentioned the value placed on transparency in the open-source

community. Open-source projects are nearly always collaborative efforts and the

commonly held view is that such projects are most effective when information

flows freely.

For this reason when I reached the point where I had work to contribute to the

project I began by publishing my designs on the Mozilla Wiki Web page. Later

I created a personal Web site to report on my progress from which I received

important comments regarding my code and tests cases and confirmation of the

popular demand for declarative animation to be implemented in Mozilla.

CHAPTER 3. ENGINEERING PROCESS 39

In addition to this, contact with other Mozilla SVG developers via Internet Relay

Chat (IRC), Usenet and email provided valuable feedback and information.

By maintaining good communication such a project is more likely to produce a

contribution that is accepted by reviewers. Furthermore it also reduces the risk

of redundant work being performed by developers who are working in parallel

but are ignorant of each others’ efforts. As one developer explained to me, “he

who implements wins, unless they get into a fighting match with the reviewers”.

3.11.1 Documentation

A feature of most agile methodologies is that documentation is lightweight com-

pared to the tomes produced under traditional software development models.

Instead, communication takes other forms such as test code and face-to-face dis-

cussion during pair programming. It is difficult to characterise documentation

within open-source projects except to say that it is generally only an adjunct and

an afterthought. Some projects do maintain helpful and up-to-date documenta-

tion but many more follow the rule “the source code is the documentation”.

As many of the documentation techniques of Extreme Programming rely on phys-

ical proximity and a small tight-knit team these were not appropriate to my

project. However, at the same time I am also not willing to accept that source

code is the sum total of a project’s documentation. Therefore in addition to the

source code I have produced I have documented the code in the manner described

above, namely the design descriptions I have posted to the Mozilla Wiki and my

personal Web site. This documentation is still lightweight compared to formal

specifications characteristic of many software development models and focuses

only on those aspects that are expected to be relevant to other developers. Over

time I intend to remove details from this documentation in order to extend its

lifespan. Once it has served its purpose and is no longer useful it will be removed

altogether.

As for the source code itself, I have paid particular attention to ensuring that the

code communicates its purpose clearly. I have also based many of the algorithms

CHAPTER 3. ENGINEERING PROCESS 40

on the pseudocode provided in the SMIL Animation specification so that the

correspondence between the two is obvious.

3.11.2 Risk management

I have already referred to risk management many times in describing the Spiral

Development process I have adopted, and risk assessments have been a feature

of the status reports I have delivered throughout the project. I will very briefly

describe some of these risks as examples of the sort of management required for

this project.

The most critical risk to this project was that I might be unable to implement

the selected feature to a level that is demonstrable. My mitigation strategy

was the iterative development process outlined at the start of this chapter. The

success of this approach should be evident from the fact that at the completion

of this project the work I have performed is demonstrable and has been so for

approximately six months.

Another risk I identified was that another contributor may independently imple-

ment the same feature as I have chosen. While this would not make my work

entirely redundant, it may lessen its value to the developer community and would

seem like an inefficient use of effort. My response to this risk was to communicate

my intentions clearly to those who might be considering tackling this topic them-

selves. This approach was successful and the status log I maintain is referred to

by many Web sites that track the progress of SVG in Mozilla.

A final example of the risk management employed in this project concerns the

risk that the performance of the final product might be insufficient. I addressed

this risk in two manners. Firstly, the iterative strategy I have outlined served

to provide early feedback which assured me that performance would be at least

tolerable. Secondly, time was allocated later in the project specifically for per-

formance tuning. I followed this plan and was able to successfully improve the

performance of the code as described in Chapter 6.

CHAPTER 3. ENGINEERING PROCESS 41

The final evidence of successful risk management in this project is that none of

the identified risks eventuated and instead I was able to successfully deliver a

working product within the scheduled time.

Chapter 4

Analysis

The model defined by the SMIL Animation specification is not trivial and in

this chapter the high level requirements and characteristics of this model are

described. The other major source of complexity in this project is that this

model must be integrated into the Mozilla codebase which, as we shall see, is a

challenging task.

4.1 Analysis of the SMIL model

I have already described how the features of SMIL Animation can be broken

into two models: the timing model and the animation model. This is not obvious

from the specification but is elaborated by Schmitz (n.d.). Apart from this broad

division of functionality, there are several other distinguishing characteristics of

the SMIL model.

4.1.1 Data-type agnostic animation

I have so far referred to the SMIL model without reference to SVG. This is because

the semantics defined in the SMIL specification are independent of any particular

data types and can be applied to any number of host languages. Examples

42

CHAPTER 4. ANALYSIS 43

of host languages that utilise SMIL are HTML or XHTML—HTML+TIME or

XHTML+SMIL—Multimedia Messaging System (MMS) and SVG. As such it is

possible to implement a SMIL timing and animation model largely independently

of SVG. In the context of Mozilla such an approach is preferable as it may then

be re-used in a variety of other host languages supported by the Mozilla platform.

According to the SMIL Animation model, animation elements identify target at-

tributes within target elements and specify how those attributes should change

over time. One particular detail that deserves attention is that these attributes

may be one of those defined for the target element in the host language’s Docu-

ment Type Definition (DTD) or may be a Cascading Style Sheet (CSS) property

of the element. In the case of SVG this distinction is somewhat blurred as in

many cases the same attribute fulfils both roles.

Figure 4.1 shows a series of animation elements targeting different attributes on

the same target element. The first two elements use the same syntax although

the first target attribute is an XML attribute whilst the second target attribute is

a CSS property. For the third animation element a different syntax is used. This

is one of a handful of special cases in SMIL animation where different handling is

provided for some data types. However, even in this special case the animation

parameters follow the same syntax and semantics as the preceding elements.

<?xml version="1.0" standalone="no" ?>

<svg xmlns="http://www.w3.org/2000/svg" width="200px" height="100px">

<circle fill="green" stroke="black" cx="50" cy="50" r="40">

<animate attributeName="cx" from="50" to="150" dur="2s"/>

<animate attributeName="stroke-width" from="1" to="4" dur="2s"/>

<animateColor attributeName="fill" from="green" to="blue" dur="2s"/>

</circle>

</svg>

Figure 4.1: A set of animation elements targeting different attributes on
the same target element.

Generally speaking, the SMIL model is independent of the host language it is

integrated with and the data types being animated.

CHAPTER 4. ANALYSIS 44

4.1.2 Additive composition

SMIL allows for an animated attribute to be the target of more than one ani-

mation. For example in Figure 4.2 two animations each target the cx (x centre)

attribute. The result is a combination of the two animation functions.

<?xml version="1.0" standalone="no" ?>

<svg xmlns="http://www.w3.org/2000/svg" width="200px" height="100px">

<circle fill="red" stroke="black" cx="50" cy="50" r="40">

<animate attributeName="cx" by="-50" dur="2s"/>

<animate attributeName="cx" to="150" dur="2s"/>

</circle>

</svg>

Figure 4.2: An example of two animations targeting the same attribute.

SMIL Animation defines rules for when and how these animations are to be com-

bined and how to determine which animation takes precedence if the animations

are not to be combined. This suggests some sort of arbitration is necessary to

manage the competing animations.

One interesting special case is a particular type of animation known as ‘to anima-

tion’ which is described by the specification as being “a kind of mix of additive

and non-additive”. The behaviour is quite different from the normal cases and

requires particular attention during implementation.

4.1.3 Timer independence

Times in SMIL are defined independently of any frame rate. Given the wide

range of hardware on which Mozilla is expected to run, this implies that no

assumptions can be made about the amount of time that has elapsed between

successive samples. On one platform this may be a matter of milliseconds and the

the new sample may be only slightly different to the last. On another platform

whole seconds may elapse between frames and in this time several animation

CHAPTER 4. ANALYSIS 45

intervals may have begun and finished and changes may have been made to the

animation parameters using script. All this requires that the timing logic be

completely independent of the frame rate.

A further consideration is that document time is not continuous. It is possible

through features such as hyperlinking to ‘seek’ the animation to a point in the

past. This requires further specialised handling if assumptions are made about

the direction in which time progresses.

4.1.4 Dynamic document model

One of the most challenging aspects of implementing SMIL Animation in SVG

is that SVG fails to disallow changing of the animation parameters at runtime.

Although the SMIL Animation specifications states, “Language designers inte-

grating SMIL Animation are encouraged to disallow manipulation of attributes

of the animation elements, after the document has begun.” the SVG 1.1 specifi-

cation does not provide any such restriction. In fact it even refers to using DOM

methods to modify animation elements.

Allowing such changes is a significant consideration for any implementation. In

fact, the SMIL Animation specification provides, “Dynamically changing the

attribute values of animation elements introduces semantic complications to the

model that are not yet sufficiently resolved”.

In general, this will mean that fewer optimisations are possible as state necessary

for resolving changes to the model must be maintained. Furthermore, the logic

for performing a minimal update to the model will differ depending on the nature

of the change and is therefore likely to be complex.

4.1.5 Dynamic dependencies

Another feature of the SMIL model that will have a considerable impact on any

design is that animations may be defined to be relative to one another. This

CHAPTER 4. ANALYSIS 46

implies that animations must communicate changes in state to one another and

the specification defines this behaviour for a range of different situations. This

is a significant source of complexity in the model.

4.2 Analysis of the Mozilla codebase

Writing a completely new software system is an entirely different matter to in-

tegrating some new functionality into an existing system, especially when the

system to be integrated with is as complex and established as the Mozilla code-

base.

Before undertaking this project several people, including some from within the

SVG developer community warned me about the difficulties of comprehending

the Mozilla codebase for a short-term project. This was a fair warning and even

after eighteen months of working with this codebase I still could not present a

comprehensive overview of the platform. Fortunately this is not necessary as

this task has been undertaken successfully by many others who are far more

capable than I of explaining the many components and technologies that make

up Mozilla (in particular see McFarlane 2003b, Oeschger, Murphy, King, Collins

& Boswell 2002, Dsouza, Hildebrand & Israeli 2004). Instead I will describe only

those components that are related to this project and even here I will restrict my

description to very general terms.

4.2.1 Netscape Portable Runtime

The Netscape Portable Runtime (NSPR) is the basic platform abstraction layer

upon which all other components are built. This layer provides basic services such

threading and synchronisation, timers, fixed-size data types, data structures such

as hash tables, file and network input and output, and memory management.

NSPR itself has only a small impact on a project such as this. The only effect

it has is that programming code should be written to make use of the services

CHAPTER 4. ANALYSIS 47

provided by NSPR to ensure consistent behaviour across all the platforms that

Mozilla supports. However, the presence of NSPR is a reminder of the cross-

platform nature of Mozilla and this does have a significant impact on this project.

NSPR currently supports Windows platforms, Macintosh and at least twenty

versions of UNIX (mozilla.org 2000) and the Mozilla codebase as a whole also

supports these platforms to varying degrees. In order to ensure that code writ-

ten for Mozilla can be used across as many platforms and compilers as possible a

detailed set of portability guidelines has been established. These guidelines pre-

clude many C++ features such as exceptions, run-time type information, C++

standard library features and many uses of templates (Williams 1998). Gener-

ally, each of these are disallowed because of inconsistent compiler support for the

feature. One impact of this emphasis on portability is that it limits the range of

third party libraries that can be used. In some cases this has been addressed by

writing new utilities that comply with the requirements of the Mozilla platform.

This requirement for cross-platform portability will have a significant effect on

the design of any new features added to the Mozilla codebase and must certainly

be considered in this project.

4.2.2 XPCOM

In order to provide cross-platform component technology the Mozilla project

has developed the Cross-Platform Component Object Module (XPCOM). This

technology is similar to other component technologies such as Microsoft COM

and, to a lesser extent, CORBA. Such technologies promote greater modularity

and decreased coupling between software components by providing facilities for

components to communicate via interfaces without being aware of the imple-

mentation of those interfaces. This includes being aware of the programming

language used to implement the interface.

For the case of XPCOM, most components are implemented in C++. In this

context XPCOM represents a different approach to object design. Because C++

CHAPTER 4. ANALYSIS 48

does not have the concept of interfaces such as are used in Java1 complex class hi-

erarchies often involve multiple inheritance with virtual base classes and run-time

type information (RTTI). Compared to this, XPCOM avoids virtual base classes

and uses QueryInterface in place of RTTI and dynamic cast’ing between in-

terfaces. This has significant effects on the arrangement of class hierarchies.

XPCOM has its costs and is not without its critics (Collins 2002). One reason

is the performance costs associated with the sometimes unnecessary layers of

abstraction it introduces. For example, all method calls through an XPCOM

interface are virtual and the cost associated with this can, when performed fre-

quently enough, be significant. For this reason there is an ongoing effort to remove

XPCOM usage where it is not useful, a process known as de-COMtamination.

Avoiding unnecessary use of XPCOM is therefore another design consideration.

4.2.3 Utility of SMIL

The Mozilla platform is capable of processing many languages other than SVG.

Given that SMIL Animation is defined independently of any particular host lan-

guage it would certainly be beneficial to the Mozilla platform to implement SMIL

independently of SVG. Taking this approach would allow SMIL support to be

later extended to XHTML to support the XHTML+SMIL Profile for example.

4.2.4 The creation of a platform

In the background to this project I have described how the Mozilla codebase

provides an attractive platform for application development. This emphasis on

developing an application platform implies a certain approach to implementation.

In a typical SVG implementation produced simply to render graphics, qualities

such as functional correctness, performance, and rendering quality are important.

1Although pure abstract classes are possible, C++ does not distinguish between this case
and regular abstract base classes.

CHAPTER 4. ANALYSIS 49

However, in developing an application platform, scriptability—the ability to up-

date the model dynamically—is also of great importance. Similarly, integration

with the remainder of the platform is also a high priority.

4.2.5 Contributing to a mature product

The Mozilla codebase is used to develop high-profile mass-market products such

as the Firefox Web browser. For this reason additions to the codebase are strictly

controlled by a review process. This reviewing seeks to ensure that the code being

added does not introduce new security flaws, is of high quality, is consistent with

the remainder of the codebase and does not increase the code size of the final

product unnecessarily.

Addressing these concerns in the design of any new contribution may increase the

likelihood and rate at which it is accepted. For example, by structuring the code

such that it can be conditionally disabled, it may be able to be accepted into the

Mozilla codebase in a disabled state from which point outstanding concerns can

be addressed.

Chapter 5

Design

Based on the analysis of the requirements for this project we now consider an

overall approach to meeting these requirements, the broad functional components

of this design and the process used to arrive at these.

5.1 Design process

My initial design efforts followed the lines of typical Object-Oriented Design

(OOD). The process I adopted as recorded in my engineering log was:

1. Define the top level objects.

2. Assign responsibilities for the requirements to each.

3. Determine the informational dependencies between each object. In par-

ticular, consider how easy it will be to support updating via the DOM.

For each property that can be changed, consider how the change would be

propagated.

4. Determine ownership relationships.

50

CHAPTER 5. DESIGN 51

5. Evaluate the design considering the following questions: Is it testable? Will

it be possible to extract useful subsets for each iteration without implement-

ing the whole thing?

6. Iterate.

Using this approach I developed the design shown in Figure 5.1.

Animation Controller

+pause():void
+resume():void
+seek():void

Timegraph

+registerAnimation():void
+unregisterAnimation():void
+getAnimationEffect():void
+getNextChange():void

Animation

-begin:int
-end:int
-dur: int
-restart:int
-repeatCount:int
-repeatDur:int
-fill:int
-accumulate:int

+isAdditive():bool

Instance

Animation Calculator

-underlyingValue:int

-interpolate():void
+accumulate():void

Animate Calculator Set Calculator SVG Animate Motion Calculator

Time Scaler

Animation Strategy

+getPosition():void

Values Strategy

-values:int

FromToBy Strategy

-from:int
-to:int
-by:int

*

*

Linear Time Scaler

-dur:int
-keyTimes:int

Paced Time Scaler

-dur:int
-distances:int

Spline Time Scaler

-dur:int
-keyTimes:int
-keySplines:int

Discrete Time Scaler

-dur:int
-keyTimes:int

= TimedDocumentRoot
 + timers

= TimeContainer
 + Compositor

= InstanceTime

= TimedElement

Not necessary

= AnimValue

= calcCanonicalTime()

Timing Model

Animation Model

Figure 5.1: Class diagram of the design prior to incorporating Schmitz’s
ideas. The annotations and division between timing and animation model
were not present in the original design but have been included here to show
the correlation between this design and the design shown in Figure 5.2.

Following on from this design I investigated existing implementations and related

patterns. During this stage I discovered Schmitz’s (n.d.) detailed design docu-

ment for supporting SMIL Animation in the Apache Batik SVG toolkit. Schmitz

CHAPTER 5. DESIGN 52

is one of the editors of the SMIL Animation specification and his design is based

on experience in implementing this standard.

Schmitz introduces the division of the model into those components relating to

timing and those relating to animation. Between these two only simple times

and minimal state information is exchanged. In addition to establishing this

separation of concerns Schmitz describes the components within each of these two

parts. Details of integration with Batik such as timers for producing frames are

deliberately brief to emphasise the independence of the model from any particular

application or sampling frequency.

There are many advantages to reusing Schmitz’s design. Firstly, it serves as an

additional source of documentation of my work. Secondly, it provided me with

greater confidence in the design allowing me to spend less time on design in

successive iterations. Finally, this kind of reuse saves time and is good software

engineering practice. Schmidt & Stephenson (1994) take up this topic promoting

design patterns as a means of achieving reuse across operating system platforms.

Although Schmitz’s design, even without the specific references to Batik, may be

too application-specific to fit Gamma, Helm, Johnson & Vlissides’s (1995, p. 3)

definition of a software design pattern, design reuse is still a valuable practice.

In his assessment of Gamma et al.’s (1995) Design Patterns, Vinoski asserts that

reusable design is ‘the real key to software reuse’.

After reviewing Schmitz’s proposal I highlighted ideas to incorporate into my

own design. However, by the end of this process my design resembled far more

closely Schmitz’s proposal than my original starting point. This was partly due

to a deliberate attempt to base the names of classes and properties on those in

Schmitz’s design to highlight correspondence between my design and Schmitz’s

proposal. There are however several notable deviations from Schmitz’s proposal

which I will outline in the corresponding description of each component.

The result of the revised design is shown in Figure 5.2.

CHAPTER 5. DESIGN 53

nsSMILAnimationRegistry

nsSMILCompositor

*

nsPresContext

nsSMILTimedElement

nsSVGAnimateElement

<< interface >>

nsIAnimationController

<< interface >>

nsISMILAnimationController

<< interface >>

nsISMILAnimationFunction

<< interface >>

nsISMILComposable

*

<< interface >>

nsISMILTimeClient

nsSMILAnimationFunction

nsSMILTimedDocumentRoot

*

<< interface >>

nsISMILAnimElement

nsSVGSVGElement<< interface >>

nsISMILAnimationRegistry

<< interface >>

nsISMILTimedElement

Timing model

Animation model

<< interface >>

nsISMILTimeContainer

nsSMILAnimationController

*

<< interface >>

nsISVGAnimationElement

Figure 5.2: Overview class diagram after incorporating Schmitz’s ideas.

CHAPTER 5. DESIGN 54

5.2 Operation overview

The overall flow of control in this design is based upon three stages:

• document setup,

• sampling, and

• composition.

5.2.1 Document setup

When an SVG document fragment is loaded, an nsSVGSVGElement is created by

the parser. This object creates the animation controller if it does not already

exist and associates it with the current presentation context.

When an animation element is loaded, an appropriate SVG object is created. For

an <animate> element this is nsSVGAnimateElement. This object requests the

animation registry object which is created if necessary. There is one registry per

SVG document fragment. This registry is then used to register with the timing

and animation model.

The nsSVGAnimateElement is represented in the animation model by an ns-

SMILAnimationFunction and in the timing model by an nsSMILTimedElement.

All the parsing work including supplying default values is performed by these

two objects. This simplifies nsSVGAnimateElement considerably and allows this

functionality to be re-used by other animation elements such as <animateColor>

and even in other host languages for SMIL.

5.2.2 Sampling

The animation controller is responsible for the animation timer and periodically

instructs its time containers to conduct a new sample. The time containers in

CHAPTER 5. DESIGN 55

turn call their timed elements. The timed elements compare the sample time to

their parameters and if they are active supply their time client with a new sample

time adjusted according to their parameters. The animation functions which act

as time clients store the sample parameters provided by the timed elements.

5.2.3 Composition

At the end of a sample, the time containers instruct the registry with which they

are associated that the sample has ended and at this point composition is ini-

tiated. The nsSVGSVGElement is informed via the nsISMILAnimationObserver

interface (not shown) that composition is beginning so that redrawing may be

suspended.

There is one compositor object for each animated attribute and each is called in

turn. Each compositor sorts its animation functions according to their priority

and then calls each function to build up the final animated value which is then

set on the appropriate SVG element.

At the end of sampling the nsSVGSVGElement is informed that composition has

finished at which point redrawing is unsuspended and the display is updated.

A summary of the sampling and compositing steps is shown in the sequence

diagram in Figure 5.3.

CHAPTER 5. DESIGN 56

co
nt

ro
lle

r:
ns

S
M

IL
A

ni
m

at
io

nC
on

tr
ol

le
r

co
nt

ai
ne

r:
ns

S
M

IL
T

im
ed

D
oc

um
en

tR
oo

t
el

em
:n

sS
M

IL
T

im
ed

E
le

m
en

t
fu

nc
:n

sS
M

IL
A

ni
m

at
io

nF
un

ct
io

n
re

gi
st

ry
:n

sS
M

IL
A

ni
m

at
io

nR
eg

is
tr

y
sv

g:
ns

S
V

G
S

V
G

E
le

m
en

t
co

m
po

si
to

r:
ns

S
M

IL
C

om
po

si
to

r

S

am
pl

e(
)

S

am
pl

eA
t(

)

S

am
pl

eA
t(

)

E

nd
S

am
pl

e(
)

S

ta
rt

C
om

po
si

tin
g(

)

C

om
po

se
S

am
pl

e(
)

C

om
po

se
R

es
ul

t(
)

E

nd
C

om
po

si
tin

g(
)

F
ig

u
re

5
.3

:
S
eq

u
en

ce
d
ia

gr
am

fo
r

a
si

n
gl

e
an

im
at

io
n

sa
m

p
le

.

CHAPTER 5. DESIGN 57

5.3 Comparison with Schmitz’s model

From this high-level view the most significant deviation from Schmitz’s model is

the distinction between sampling and composition and the inclusion of the ani-

mation registry. The reasons for this discrepancy are detailed in the description

of the animation registry.

Another difference relates to the use of object composition rather than inheri-

tance to endow the object representing the <animate> element with timing and

animation support although Schmitz does refer to an implementation in terms

of delegation. Object composition is sometimes favoured as providing better en-

capsulation, reducing coupling and providing better runtime flexibility (Gamma

et al. 1995, pp. 18–20). In this case the reduced coupling and increased encapsu-

lation assist in producing a more self-contained SMIL implementation that can

be easily disabled.

Many of the other differences between this design and that proposed by Schmitz

are not visible from this high-level view and will be covered in the description of

each component.

5.4 Timing model

A class diagram of the components that make up the timing model is shown in

Figure 5.4. I will describe the details of each class in this diagram in turn.

5.4.1 Animation controller (nsSMILAnimationController)

The animation controller (shown only in Figure 5.2) does not belong to either

the timing or animation model but rather drives them both. The animation

controller maintains the animation timer so it is this class that determines the

sample times and sample rate.

CHAPTER 5. DESIGN 58

nsSMILInstanceTime

+DependentUpdate()

+ClearOnReset():PRBool

+Time():nsSMILTimeValue

<< interface >>

nsISMILTimedElement

+AddInstanceTime()

+SetTimeClient()

+SampleAt()

+Reset()

+SetBeginSpec():nsresult

+SetEndSpec():nsresult

+SetSimpleDuration():nsresult

+SetMin():nsresult

+SetMax():nsresult

+SetRestart():nsresult

+SetRepeatCount():nsresult

+SetRepeatDur():nsresult

+SetFillMode():nsresult

nsSMILInterval

+AddDependent()

+RemoveDependent()

+Begin():nsSMILTimeValue

+End():nsSMILTimeValue

nsSMILTimeValue

�mMilliseconds:PRInt64

+IsIndefinite():PRBool

+SetIndefinite()

+IsResolved():PRBool

+SetUnresolved()

+GetMilliseconds():PRInt64

+SetMilliseconds()

+CompareTo():PRInt8

<< interface >>

nsISMILTimeContainer

+Pause()

+Resume()

+Sample()

+AddTimedElement()

+RemoveTimedElement()

nsSMILTimedDocumentRoot

�documentBegin:PRInt64

�accumulatedOffset:PRInt64

+WallclockToDocumentTime():nsSMILTimeValue

+SeekToTime():nsresult

+GetDocumentTime():PRInt64

nsSMILAnimationRegistry

+StartSample()

+EndSample()

nsSMILTimeValueSpec

�isBegin:PRBool

�offset:PRInt64

�owner:nsSMILTimedElement

nsSMILTimedElement

�currentInterval:nsSMILInterval

<< interface >>

nsISMILTimeClient

+SampleAt()

+SampleLastValue()

+ToActive()

+ToInactive()

specs+

*

dependents+

*

creator+

*

dependents+

*

timebase+

0..1

oldIntervals+*

*

Figure 5.4: Class diagram of the timing model.

CHAPTER 5. DESIGN 59

There is at most one animation controller associated with a presentation con-

text. The implication of this is that for an XHTML document containing several

independent SVG fragments, they will all be driven by the same controller. This

arrangement allows frame-rate tuning to be performed at a document-level which

is likely to produce better results than attempting to tune several controllers in-

dependently.

When a document containing SVG is loaded the nsSVGSVGElement checks if there

is already an animation controller associated with the presentation context and

if there is not, a new controller is created and associated. The controller object

is required even for un-animated SVG in order to initialise the timed document

root with the appropriate start time for the document in case animation is later

added via script.

5.4.2 Timed document root (nsSMILTimedDocumentRoot)

The timed document root is a concrete implementation of the time container

interface that translates samples into times relative to the start time of the doc-

ument. There is one such object per SVG document fragment. This class is

responsible for notifying the registry when a new sample begins and ends.

The time container interface hides the details of the timed document root from the

animation controller and is a step toward implementing the kind of time container

support described in the SMIL 2.0 specification of which SMIL Animation is a

subset.

5.4.3 Timed element (nsSMILTimedElement)

A timed element contains the timing properties of an animation element such as

<animate>. This is perhaps the heart of the timing model as it is here that most

of the rules for calculating new intervals, implementing fill modes, repeating and

providing restart behaviour are implemented.

CHAPTER 5. DESIGN 60

5.4.4 Time client interface (nsISMILTimeClient)

The time client interface is the primary interface between the timing model and

the animation model. Currently only one time client is supported per timed

element. This may be extended in order to support <animateMotion> which may,

for example, be modelled as one nsSMILTimedElement with three time clients

corresponding to the x, y, and transform attributes of the target element. Most

likely though this would be implemented by animating a single transformation

matrix.

5.4.5 Time value specification (nsSMILTimeValueSpec)

A time value specification performs parsing of individual begin and end times.

SMIL Animation defines several kinds of these specifications such as offset times,

wallclock times, event-base times and syncbase times. Currently only offset times

have been implemented. Upon implementing other types it may be more suitable

to refactor this class into an interface with several concrete implementations and

a static factory method in the interface to create the appropriate object. In

keeping with Beck (2000, pp. 103–107) and Fowler’s (1999, p. 58) guidelines I

have deferred this refactoring until it is necessary.

5.4.6 Interval (nsSMILInterval)

An interval is essentially a structure consisting of a begin and end time. It is

used for representing the current interval and also for storing past intervals for

the purpose of hyperlinking back in time. For syncbase timing, intervals also

inform their dependent instance times when they have been updated.

5.4.7 Instance time (nsSMILInstanceTime)

An instance time represents an instant in document simple time that may be

used to construct a new interval. Instance times created by time value specifi-

cations are also responsible for informing their creator when they have changed.

CHAPTER 5. DESIGN 61

This might happen when the instance time corresponds to a syncbase time value

specification and the interval on which it depends changes.

5.4.8 Time value (nsSMILTimeValue)

A time value is a simple tri-state data type. Times are expressed as a signed 64-

bit integer representing milliseconds or the special values indefinite or unresolved.

The use of 64-bit integers rather than floating pointer numbers simplifies some

comparisons and should provide improved performance, particularly as 64-bit

processors become more prevalent.

A 32-bit signed integer was considered to have insufficient range, allowing a

range of only 25 days in either direction. While this may seem to be ample for

an application that typically only animates for a matter of seconds before being

replaced with other content, we need to consider the full range of use cases for the

Mozilla platform. Amongst these are various embedded applications such as the

Minimo project that seeks to produce a lightweight version of Mozilla suitable

for small devices. Consider a scenario where Mozilla’s layout engine—Gecko—is

embedded in an informational display at a railway station showing the arrival

and departure times on each platform. In this case it would be unacceptable for

the application to fail every 25 days because of an inadequate representation of

times. The use of signed 64-bit integers in this design provides a range of 292

million years in either direction which should be sufficient for most applications.

5.5 Animation model

A more detailed view of the classes that make up the animation model component

of the design is shown in Figure 5.5. We will discuss each class in this diagram

in turn.

CHAPTER 5. DESIGN 62

nsSMILAnimationRegistry

+StartSample()

+EndSample()

<< interface >>

nsISMILAnimationRegistry

+SetController():nsresult

+SetObserver()

+Start()

+Pause()

+Unpause()

+IsPaused():PRBool

+GetCurrentTime():float

+SetCurrentTime():nsresult

+RegisterComposable():nsresult

+UnregisterComposable():nsresult

+RegisterTimedElement():nsresult

+UnregisterTimedElement():nsresult

nsSMILCompositor

+AddComposable():nsresult

+RemoveComposable():nsresult

+ComposeSample()*

<< interface >>

nsISMILComposable

+ComposeResult()

+CompareTo():PRInt8

+GetBeginTime():PRInt64

+GetDocumentPosition():PRUint16

+IsActive():PRBool

+WillReplace():PRBool

+HasChanged():PRBool

<< interface >>

nsISMILAnimAttr

+GetBaseValue():nsresult

+SetAnimValue():nsresult

+Create():nsresult

+CreateFromSpec():nsresult

mTargetAttribute#

nsSMILAnimationFunction

<< interface >>

nsISMILAnimationFunction

+SetTargetAttribute():nsresult

+GetTargetAttribute():nsISMILAnimAttr

+SetDocumentPosition()

+SetAccumulate()

+SetAdditive()

+SetBy()

+SetCalcMode()

+SetFrom()

+SetKeyTimes()

+SetKeySplines()

+SetTo()

+SetValues()

<< interface >>

nsISMILTimeClient

+sampleAt()

+sampleLastValue()

+toActive()

+toInactive()

+removeFill()

<< interface >>

nsISMILAnimationObserver

+StartSample()

+StartCompositing()

+EndCompositing()

+EndSample()

nsSVGSVGElement

+GetAnimationRegistry()

+EnumerateAnimationNodes():nsresult

<< interface >>

nsISMILAnimVal

+ComputeDistance():PRBool

+Interpolate():nsresult

+Add():PRBool

+Set():PRBool

+Repeat():PRBool

<< interface >>

nsISMILAnimElement

+GetAnimAttribute():nsISMILAnimAttribute

nsSVGElement

*

values+

Figure 5.5: Class diagram of the animation model.

CHAPTER 5. DESIGN 63

5.5.1 Animation registry (nsSMILAnimationRegistry)

The animation registry acts as a single point of registry with the SMIL model.

There is one such registry per SVG document fragment. This class is not present

is Schmitz’s design. I have included it for three reasons.

Firstly, the animation registry simplifies registering for animation elements and

the outermost SVG element. Due to the way compositing is performed it is

necessary for each animation element to make itself known to both the time

container for the SVG document fragment and the compositor assigned to the

attribute being animated. To simplify these operations and hide some of the

details of the SMIL model, the animation registry provides a simple interface for

registering with the timing and animation model.

Secondly, the animation registry allows per-sample operations to be performed

at the appropriate time. Schmitz’s model does not delve into integration issues

such as suspending and un-suspending redrawing so I have chosen to include

this here via the nsISMILAnimationObserver interface. This interface provides

a few methods called at pertinent times so that operations such as suspending

and un-suspending redrawing can be performed.

Finally, the animation registry allows the compositing to be controlled ‘from

above’. This is the most significant deviation from Schmitz’s design. In Schmitz’s

design the timing and animation model are very elegantly kept at arm’s length

through the time client interface. As each composable object is sampled it pro-

vides its result to the compositor. The compositor tracks the results it has re-

ceived and when it has received results from all the registered active composable

objects it begins composition. Some exceptions have to be accounted for such as

‘to animation’ and relative values and for this Schmitz suggests callbacks could

be used.

The design presented here operates in the opposite direction. The composable

objects simply store the sample parameters provided through the time client

interface. These parameters include information such as the simple time of the

last sample. After all composable objects have been sampled the animation

CHAPTER 5. DESIGN 64

registry is told to start compositing. The animation registry instructs all its

compositors to perform compositing. Each compositor then iterates through the

composable objects requesting their results as necessary.

Some of the advantages of this approach are:

• No special handling is required for ‘to animations’.

• The compositor does not need to combine results, or even know about the

additive behaviour of its composable children.

• The compositor is free to optimise as it sees fit by only requesting those

composable objects that will actually affect the final result calculate their

results.

• Relative values can be recalculated in a simpler fashion.

• Animations that are frozen do not require sampling as they will simply

reuse the parameters passed to them at the final sample.

• Knowledge of how different types of animations prioritise is confined to the

composable objects themselves and not the compositor.

The main disadvantage of this approach is coupling between the timing model

and animation model. This coupling appears between the animation registry and

the timed document root. However, my view is that the simplicity afforded by

this approach warrants the extra coupling.

The animation registry also provides the implementation for several animation

related methods of the SVGSVGElement DOM interface.

5.5.2 Animation observer (nsISMILAnimationObserver)

This interface allows a client to be informed of steps in the animation process.

This is used by nsSVGSVGElement to suspend and un-suspend redrawing before

and after compositing as well as to batch enumerating the animation nodes.

CHAPTER 5. DESIGN 65

Without batching the enumeration which is needed for proper prioritisation of

animation functions would occur each time an element was attached to the SVG

document tree. If several elements were attached simultaneously such an opera-

tion would be of order O(n!).

The use of the Observer pattern allows the SMIL model to remain independent

of SVG or any other host language.

This interface is not in Schmitz’s design. I have included it for reasons which are

explained in the description of the animation registry above.

5.5.3 Compositor (nsSMILCompositor)

Each compositor manages a collection of animation functions that target the

same attribute. Each of these animation functions implements the nsISMIL-

Composable interface. The compositor is responsible for calling these objects in

order from lowest priority order to the highest priority according to the animation

sandwich model defined in the SMIL Animation specification.

Each time an composable object is called it is passed the underlying value of the

sandwich to which it may add its result or replace it depending on the additive

behaviour of the animation function.

The compositor is responsible for re-compositing when a relative value changes

and performs optimisations such as filtering out those objects that will not con-

tribute to the final result.

5.5.4 Animation function (nsSMILAnimationFunction)

This class provides the calculation of animation values for animation elements

that perform interpolation such as <animate> and <animateColor>. This in-

cludes providing different interpolation modes, additive modes and time scaling

operations.

CHAPTER 5. DESIGN 66

Later when the non-interpolating <set> element is implemented, this class and

interface may be split into nsSMILSimpleAnimFunc and nsSMILInterpolating-

AnimFunc. Other animation elements such as <animateTransform> and <animate-

Motion> may be implemented as subclasses of this class or by adding extra pa-

rameters.

All attribute parsing and handling such as providing default values is performed

by this class. This allows this logic to be shared between all animation elements.

This class corresponds to InterpolatingAnimElement in Schmitz’s design.

5.5.5 Animated value interface (nsISMILAnimVal)

This interface is the basic layer of indirection used by the animation model to

manipulate different data types. The methods in this interface allow all the

necessary calculations such as addition and repetition to be performed.

5.5.6 Animated attribute interface (nsISMILAnimAttr)

This interface sits above the animated value interface to wrap the animated and

base value of an attribute together for querying by SMIL. Because this interface

provides the association to a particular animated attribute, the animated value

objects can be completely independent of any SVG data type and can therefore

be very lightweight objects. This is important as many animated value objects

are created by the animation function.

5.5.7 Animated element interface (nsISMILAnimElement)

This interface is not used within the SMIL module but provides a consistent man-

ner for identifying elements that have attributes that can be animated and for

accessing those attributes. This interface could potentially be used to allow ele-

ments from different XML namespaces but within the same document fragment

to be targeted for animation.

CHAPTER 5. DESIGN 67

Any target element may disallow animation of a particular attribute by returning

a NULL result for this attribute.

5.6 Design evaluation

The design proposed in this chapter exhibits the following qualities:

Maintainability. By basing the design and class and method names on the

design proposed by Schmitz the design benefits from the additional docu-

mentation provided by Schmitz. This will assist those maintaining the code

to comprehend its operation.

Modularity. The components in this design are independent of any particular

host language. All interactions with the SVG model take place through

abstract interfaces such as the animation observer interface. This allows

the entire SMIL module to be easily disabled which reduces the risk of

accepting it into the Mozilla codebase.

Reusability. The use of composition to provide animation elements with an-

imation and timing behaviour as well as parsing support and parameter

validation allows this functionality to be easily provided to other anima-

tion elements including animation elements in host languages other than

SVG.

Simplicity. The distinction between the timing and animation model allows the

most complex parts of SMIL Animation to be implemented in quite inde-

pendent classes, namely the timed element class and the animation function

class. This avoids the complexity that would result from attempting to im-

plement this behaviour in a single Blob entity (Akroyd 1996).

Performance. Although performance is not a major feature of this design the

inclusion of the animation observer interface allows rendering updates to be

batched which dramatically reduces the amount of busy work that would

otherwise be involved in rendering partial frames.

CHAPTER 5. DESIGN 68

Another performance characteristic of this design is that each sample is

conducted synchronously. This means that after the animation controller

initiates a new sample, it does not receive control again until the next frame

in the animation has been rendered. This allows the animation timer to be

tuned according to the actual time used to produce each frame. This gives

more useful feedback than if rendering were performed asynchronously in

which case the timer could only be tuned on the time required to produce

the parameters of the next frame which is roughly constant.

A third performance characteristic is the inclusion of methods in the com-

posable interface to allow the compositor to filter out animations that will

not affect the display. This is discussed in the next chapter on implemen-

tation details.

Chapter 6

Implementation details

The implementation I have produced conforms to the design I have outlined in

the previous chapter. However, in implementing this design there are several

details that deserve special comment.

6.1 Controlling the animation start-point

Although starting the animation might seem to be a simple operation it was

complicated by two factors.

Firstly, SVG defines that animations occur at the same moment as the SVGLoad

event is fired. The timing of this event depends of the use of the external-

ResourcesRequired attribute which is not yet implemented in Mozilla. My ap-

proach was to listen for this event so that when the externalResourcesRequired

attribute is implemented animation will automatically produce the correct start-

ing behaviour. This was simple to implement requiring only trivial changes to

the circumstances under which the SVGLoad event was dispatched.

One drawback of this approach is that if an SVG document fragment is cre-

ated entirely by script the SVGLoad event will not be dispatched and animation

69

CHAPTER 6. IMPLEMENTATION DETAILS 70

will never start. This situation will need to be re-considered when support for

externalResourcesRequired is introduced.

The second source of complication in starting animation arose late in the project

when a new caching mechanism was introduced for pages in the Web browser’s

back and forward history. This mechanism keeps certain documents fully as-

sembled in memory so that when the user navigates backward and forward the

document can be restored almost instantly.

One implication of this caching strategy was that animation would continue even

whilst the document was not visible which would result in busy work and failed

assertions as some objects necessary for animation would be no longer available.

Another implication is that when a document is loaded from this cache it is

restored in the state in which it was previously seen. Animations however should

not follow this behaviour but should restart.1

Several solutions to this problem were trialled. The simplest solution involves

creating an unload handler. Documents that have scripts attached that perform

actions when the document is unloaded are not stored in the cache as it will

not be possible to correctly restore the document to its previous state in these

circumstances. The simplest solution therefore would be to associate a dummy

unload handler with any document that contains animations. The drawback of

this approach is that such documents can no longer take advantage of the cache.

Another alternative is to use the SVGLoad and SVGUnload events to restart ani-

mations but in some circumstances these events are not dispatched1.

The approach that is currently implemented relies on registering for page show

and hide events that are dispatched when the document is restored and hidden.

This approach produces the correct behaviour but further testing has since re-

vealed that these events are dispatched only once for SVG documents embedded

via the <object> element. It is not yet clear if this is the intended behaviour or

if it is a defect in the page transition event dispatching.

1This is because animations are defined to start at the same time as the SVGLoad event is fired
and this event should be fired even when the document is loaded from the backward/forward
cache although in my testing it is not fired in some circumstances.

CHAPTER 6. IMPLEMENTATION DETAILS 71

One advantage of using page hide and show events is that it reduces the coupling

between other parts of the Mozilla codebase and the SMIL module. Those parts of

the code responsible for saving and restoring documents do not need to be aware

of the presence of SMIL but simply need to dispatch the appropriate events to

their registered listeners.

6.2 Integrating SVG data types

Perhaps the most disappointing part of the project is that despite developing a

useful SMIL model, it cannot not be applied broadly due to pending rework of

parts of the SVG model. This rework relates to how to store animated values

separately without reserving memory for attributes that are never animated.

The issue has been under discussion within the Mozilla developer community for

nearly twelve months but is yet to be resolved. The latest indications suggest

that this may be tied in with other refactoring of the layout engine that could

take several months or more to complete.

The implication of this situation for my project is that there is currently no

generalised mechanism for storing animated values which prevents any animation

from being performed. In order to continue with development I have produced

a näıve implementation for one data type—SVG lengths—that simply stores

the animated value separately for each attribute. This allows animation to be

performed on attributes that have a length data type such as the dimensions of

rectangles or circles. Other attributes cannot be animated.

Earlier in the project I developed a prototype of a suggestion proposed by an-

other member of the SVG developer community. This approach exploited the

C++ vtable for the animated object to make one object appear to be two sep-

arate objects with the same interface whilst still allowing the object itself to

provide different behaviour to different callers. This approach addressed the

issue of unnecessary storage but it was not without fault. Current discussion

seems to be moving away from this approach and I have removed the code from

CHAPTER 6. IMPLEMENTATION DETAILS 72

my implementation replacing it instead with the näıve approach I have already

described.

It would be possible to apply this näıve approach more widely in order to support

a wider range of animations but such work would be wasted effort once the

proposed rework is completed.

6.3 Frozen ‘to animation’

During implementation I encountered several difficulties with the SMIL Anima-

tion specification. Some of these appear to be contradictions in the specification

which I have begun to document on a Web site that I maintain to report the

status of this project. In other cases the behaviour is unexpected or difficult to

implement correctly.

The reader will most likely not be interested in these specific situations so I will

only briefly describe one difficulty as an example of the sort of complexity that

was commonly encountered during this stage.

One area in which the SMIL Animation specification is clear but difficult to im-

plement is frozen ‘to animation’. ‘To animation’ is a particular type of animation

that features an unusual combination of interpolation and addition. This situ-

ation arises when an interpolation interval is defined as having an absolute end

value—specified by the to attribute—but no starting value. The intention of such

an animation is that over the interval the result of the animation should converge

upon the specified end value regardless of the underlying value. This can produce

interesting effects when combined with other lower priority animations.

Figure 6.1 shows a simple animation where a circle follows the triangle wave

indicated by the dotted line. Figure 6.2 shows the result when a higher-priority

‘to animation’ is combined with the animation producing the triangle wave. The

resulting motion of the circle as indicated by the dotted line shows how the ‘to

animation’ comes to dominate the underlying triangle wave animation.

CHAPTER 6. IMPLEMENTATION DETAILS 73

<circle r="10">

<animate

attributeName="cx" to="300"

dur="8s" fill="freeze"/>

<animate attributeName="cy"

values="0; 100; 0"

repeatCount="4.75"

begin="-1.5s" dur="2s"

fill="freeze"/>

</circle>

Figure 6.1: A simple animation that causes a circle to follow a triangle-wave
pattern.

<circle r="10">

<animate

attributeName="cx" to="300"

dur="8s" fill="freeze"/>

<animate

attributeName="cy"

values="0; 100; 0"

repeatCount="4.75"

begin="-1.5s" dur="2s"

fill="freeze"/>

<animate attributeName="cy"

to="50" dur="8s"

fill="freeze"/>

</circle>

Figure 6.2: An animation composed of the triangle wave from Figure 6.1
combined with a ‘to animation’.

CHAPTER 6. IMPLEMENTATION DETAILS 74

This effect is not difficult to produce and in fact the SMIL Animation specification

provides a simple formula describing the result. However, this particular type

of animation also features a particular type of fill behaviour which I will now

describe.

When an animation has completed its animation interval, it may either cease to

affect the target attribute in which case this property will appear to reset, or

it may hold the target attribute at the final value with which it was animated.

This difference is referred to as the fill mode. The first possibility corresponds to

the fill mode of remove whilst the second possibility where the target attribute

is held at the final value corresponds to the fill mode of freeze. An animation

that has completed and has a fill mode of freeze is a frozen animation.2

An important note about a frozen animation is that while it might seem that

an animation that is frozen will be frozen with the last value that is defined for

the animation this is not the case. For example, if an animation is defined to

interpolate a property from a value of zero to a value of ten and that animation is

frozen after it completes, the frozen value is not necessarily ten. This is because

it is possible for an animation to cease part way through its natural interval.3

One common manner in which this situation might arise is if a non-integral

repeatCount is specified. For example, a repeatCount of 0.5 is entirely valid, as

is 3.23. In the first case the animation would stop half-way through its natural

interval and may be frozen with the value of five.

Without going any deeper into the semantics of SMIL we summarise that ‘to

animation’ produces a special combination of addition and interpolation; anima-

tions may be frozen after they complete; and the frozen value may represent a

point part-way through the animation’s interpolation interval. Now we come to

the complication with frozen ‘to animations’.

Generally if an animation is frozen it will continue to be combined with lower

2This description must be read with the concept of the animation sandwich in mind. The
fact that an animation is frozen does not mean the target attribute is also constant as there
may be another animation that is contributing to the final value of the target attribute that is
still in progress.

3By natural interval I mean what SMIL terms the simple duration.

CHAPTER 6. IMPLEMENTATION DETAILS 75

priority animations in the same manner as if it were still animating. However,

this is not the case for ‘to animation’ which combines differently when frozen.

Following is an excerpt from the SMIL Animation specification. I have included

the entire paragraph as the first half summarises what I have just attempted to

explain. The second half describes how a ‘to animation’ is frozen.

Note that if no other (lower priority) animations are active or frozen,

this [to animation] defines simple interpolation. However if another

animation is manipulating the base value, the to-animation will add

to the effect of the lower priority, but will dominate it as it nears

the end of the simple duration, eventually overriding it completely.

The value for F(t) when a to-animation is frozen (at the end of the

simple duration) is just the to value. If a to-animation is frozen

anywhere within the simple duration (e.g., using a repeatCount of

“2.5”), the value for F(t) when the animation is frozen is the value

computed for the end of the active duration. Even if other, lower

priority animations are active while a to-animation is frozen, the value

for F(t) does not change.

Source: SMIL Animation section 3.3.6, emphasis original.

In this extract we may consider F(t) to be the result of the ‘to animation’

after combining with lower priority animations but before combining with higher

priority animations.4

When the animation finishes at the end of its natural interval (called ‘simple

duration’ in the above quotation) the result is as we would expect: the ‘to’ value.

This is consistent with the definition of freezing for other kinds of animation.

However, when an animation is frozen part-way through the natural interval it

ceases to be combined with lower-priority animations and simply remains fixed

at its final value. This is quite surprising.

4The actual definition is that F(t) represents the animation effect at time t at this point in
the animation sandwich.

CHAPTER 6. IMPLEMENTATION DETAILS 76

Consider the two animations shown in Figure 6.3. Each animation is based

on freezing the animation previously described in Figure 6.2 part-way through

its natural interval. On the left the path of the animation corresponds to the

result if the ‘to animation’ continued to combine with the underlying value in

the same manner as when it was active. On the right, the path of the animation

corresponds to the behaviour defined in the SMIL Animation specification.

(a) (b)

Figure 6.3: Alternative behaviour for a frozen ‘to animation’. The path
shown in (a) corresponds to the behaviour that naturally falls out of the model
and the behaviour of many SMIL implementations. The path shown in (b)
corresponds to the behaviour defined by the SMIL Animation specification.

Producing the behaviour on the right requires that at each point after the ‘to

animation’ is frozen, the underlying animations are sampled with a sample time

corresponding to the sample time when the ‘to animation’ was frozen. Achieving

this result is particularly complicated. In the design I have described where

the timing and animation models are considered to be largely independent of

one another, implementing this behaviour requires introducing coupling between

the two models. The animation model must communicate to the timing model

that it has a frozen ‘to animation’ and so the timed elements that correspond

to underlying values of this ‘to animation’—of which the timing model has no

notion—need to be sampled with a different sample time.

From this description it should be clear that implementing this correctly would

compromise the design I have described as a great deal of special handling would

be required for a situation that I expect only arises very rarely. This is per-

haps why every implementation of SMIL Animation I have experimented with

produces the behaviour corresponding to the animation on the left of Figure 6.3

rather than the right.

CHAPTER 6. IMPLEMENTATION DETAILS 77

In this project I have produced an imperfect implementation of the behaviour

described in the SMIL Animation specification that avoids introducing coupling

between the timing and animation model. The approach I have taken is simply

to store the final result of evaluating a ‘to animation’ after it first becomes frozen

and then to use this result in subsequent samples. This approach will produce the

correct behaviour provided the frame rate of the animation is sufficiently rapid.

Just how rapid depends on the rate at which the animation changes but for the

majority of cases any inaccuracies would be undetectable. The other situation in

which this approach fails is when a ‘seek’ is performed on the animation causing

it to jump to a time where a ‘to animation’ is frozen part-way through its natural

interval and is combined with lower priority animations.

I do not mention this example as a criticism of the SMIL Animation specification

although as an implementor I would prefer that the definition of a frozen ‘to

animation’ were defined otherwise. My purpose in describing this situation is

simply to give the reader an appreciation of some of the complexities involved in

implementing SMIL Animation.

6.4 Spline-based timing

SMIL Animation includes a feature for controlling the timing of an animation

by using a function defined using a cubic Bézier curve. This function takes time

as an input parameter and scales the result to produce an adjusted output time.

Figure 6.4 shows a graph of this function. The end points of the Bézier curve are

fixed at (0, 0) and (1, 1) and the values of the two control points are set using the

keySplines attribute. This can be used to produce acceleration and deceleration

effects such as the popular ease-in, ease-out effect.

A cubic Bézier curve is described by the following equation (Shirley 2002, p. 234):

B(t) = P0(1− t)3 + 3P1t(1− t)2 + 3P2t
2(1− t) + P3t

3 , t ∈ [0, 1].

For a two dimensional curve on an x, y plane we can also express this as

CHAPTER 6. IMPLEMENTATION DETAILS 78

0 0.25 0.5 0.75 1.0
0

0.25

0.5

0.75

1.0

Input time (x)

O
ut

pu
t t

im
e

(y
)

(0,0) (x1, y1)

(x2, y2)
(1,1)

Figure 6.4: The spline graph used by the keySplines attribute.

CHAPTER 6. IMPLEMENTATION DETAILS 79

(Lancaster 1998):

x(t) = At3 + Bt2 + Ct + D

y(t) = Et3 + Ft2 + Gt + H

where:
A = x3 − 3x2 + 3x1 − x0 E = y3 − 3y2 + 3y1 − y0

B = 3x2 − 6x1 + 3x0 F = 3y2 − 6y1 + 3y0

C = 3x1 − 3x0 G = 3y1 − 3y0

D = x0 H = y0

In these equations (x0, y0) and (x3, y3) are the endpoints of the curve and (x1, y1)

and (x2, y2) are the control points that define the shape of the curve between the

endpoints. For the graph used in SMIL Animation the end points are fixed at

(0, 0) and (1, 1) which simplifies the equations somewhat.

The difficulty with these definitions however is that they are expressed in terms

of the parameter t.5 In calculating a scaled time value however we require the y

value corresponding to a given x representing the input time. This is a common

problem and several solutions have been proposed which I will describe.

The first solution that I applied was the suggestion put forward by Lancaster

(1998). This approach begins by using the x value as an initial guess for t and

then using Newton-Raphson iteration to converge on a root.

Newton-Raphson iteration is a root-finding technique that uses straight line seg-

ments created at a tangent to the curve from the current approximate root to find

a new root where the tangent crosses the x axis (Hearn & Baker 1997, pp. 621–

622). This technique is popular in graphics programming because if it converges

on a root it will do so faster than any other technique (Hearn & Baker 1997,

p. 622).

In order to create a tangent to the curve the slope of the curve must be calculated.

5The naming of variables is unfortunate in this case. I have chosen to use t as the parameter
to the Bézier equation in keeping with the literature and x to represent the input time and y
for the scaled output time.

CHAPTER 6. IMPLEMENTATION DETAILS 80

For cubic Bézier curves this is simply:

x′(t) = 3At2 + 2Bt + C

The next root is simply the point where this tangent crosses the x axis (Hearn

& Baker 1997, p. 622):

t1 = t0 −
x(t0)

x′(t0)

This procedure is repeated iteratively until the desired accuracy is achieved.

Lancaster (1998) suggests that three iterations are usually sufficient. After a

root has been found, this value for t is used as input to the Bézier function for y

to produce the scaled result.

This approach has the benefit that it is simple and fast as each iteration requires

little calculation. However, in my testing I discovered that in some cases three

iterations was insufficient. For example, the case where the first control point is

at (1, 1) and the second at (0, 0) produces wild results after only three iterations.

In this case at least fifteen iterations are needed to produce a sensible result.

Watt & Policarpo (2001, pp. 373–375) tackle a similar re-parameterisation prob-

lem. The case they consider is for a function that maps time to velocity whereas

for SMIL Animation our function maps input time to output time. Nevertheless

Watt & Policarpo’s approach is useful. They suggest building up a table of cu-

mulative chord lengths. For SMIL the same can be done only here it is much

easier. We simply build up a table of sample values equally spaced along the

Bézier curve. Then when we come to calculate a value we first find the closest

matching value in the sample table, perform some simple interpolation and then

use this value as our initial guess for the Newton-Raphson iteration. Using this

approach and a table of twenty values the function converges to a high degree

of accuracy within three iterations. For a smaller table of ten values, four itera-

tions are required for the same accuracy. We exploit the fact that the function

is strictly monotonically increasing to perform the lookup.

This table needs only be built once for each spline and can be re-used for every

CHAPTER 6. IMPLEMENTATION DETAILS 81

calculation thereafter. The resulting calculation time for each frame is minimal.

For the case when (x1, y1) and (x2, y2) define a straight line no calculation is

performed but the value is returned unscaled. Further optimisations could be

performed such as performing a binary search to find the nearest matching value

in the table but such optimisations are not likely to produce a significant benefit,

especially compared to the amount of time required for rendering.

Parent (2001, pp. 83–84) suggests a similar approach but using binary subdivision

and only when necessary. This approach may be superior for more complex curves

or when there are a large number of curves. However, for SMIL Animation the

number of spline definitions is typically small, and they are typically encountered

during document parsing so the performance penalty is paid up-front and is

nevertheless minimal.

The memory penalty is more significant. For a lookup table of eleven 64-bit

floating point numbers (as is the current implementation) 88 bytes are required.

For an atypically complex animation with 100 spline intervals 8,800 bytes are

required. This is not dramatic, particularly when compared to the size of the

other components in the document. However, if this memory requirement did

prove prohibitive we could easily half the size of the table and increase the number

of iterations but for such a complex animation speed requirements are probably

more critical and this approach is justified.

In order to test this function I have produced the simple SVG graphic shown

in Figure 6.5. This graphic allows the user to manipulate a cubic Bézier curve

interactively which will then be used as input to a motion animation. A second

object located at the origin of the graph is animated by two functions. On the

horizontal axis a constant animation moves the object to the right whilst on the

vertical axis the function defined by the curve is applied to the object. Under

this arrangement the object follows the curve defined by the user. The idea for

this test case is based on a similar tool by Lussier (n.d.).

CHAPTER 6. IMPLEMENTATION DETAILS 82

Figure 6.5: Screenshot from the keySplines test graphic.

6.5 Ownership

The lifetimes of XPCOM components are managed by a reference counting

scheme. Therefore, in order to prevent memory leaks or dangling pointers it

is necessary to consider ownership relationships carefully. The most common

problem is to define a circular ownership relationship in which memory is never

released.

I have incorporated my analysis of these relationships into the class diagrams

in Chapter 5. In these diagrams composition (the filled diamond) indicates ex-

clusive ownership where the owned class’s lifetime depends solely on its owner.

In XPCOM terms this implies that the owner is the only object holding a pro-

longed owning reference to the owned object although other objects may have

weak references to it.

Aggregation (the hollow diamond) indicates shared ownership which in XPCOM

terms implies that several objects have owning references to the owned object.

Association (the unadorned line with an arrow) indicates a weak relationship

which is expressed in XPCOM as a weak reference or a short-lived owning refer-

CHAPTER 6. IMPLEMENTATION DETAILS 83

ence although in fact these two are identical.

Based on this notation we can identify potential ownership cycles by attempting

to draw circles on the diagrams that follow only composition or aggregation

relationships and only in the direction of ownership. Such circles do not always

reveal ownership cycles as, for example, the objects acting as ‘owner’ and ‘owned’

may be different objects of the same class. There are other situations in which

a cycle may be intended but this technique nevertheless assisted me in defining

ownership relationships and identifying problem areas.

In addition to this I applied some of the memory leak detection tools developed

for tracking XPCOM memory leaks. These tools identified a particularly harmful

leak that occurred at each animation sample.

6.6 Performance tuning

At the completion of the second iteration of development I conducted some per-

formance analysis. Without any profiling tools I was limited to using some simple

timing macros provided along with the Mozilla codebase. Using this simple tech-

nique I determined that 93% of the time spent in each animation sample was spent

in rendering. Of the remaining 7% the largest single step at about 40∼45% was

setting the value inside the SVG model. My approach was therefore to reduce

the amount of rendering performed which I achieved using a simple optimisation.

If the parameters supplied to the animation function do not vary between two

samples then neither will the output. Based on this observation I created a simple

flag that is set whenever one of the animation function’s parameters are changed

and is reset whenever the animation function is evaluated. This flag is accessible

via the composable interface so that the compositor can quickly determine if any

of the animations targeting a given attribute have changed.

A second step in this optimisation is based on the fact that some animations

overwrite underlying values. In this case it is not necessary to calculate the un-

derlying value. By exposing this information to the compositor these overwritten

CHAPTER 6. IMPLEMENTATION DETAILS 84

animations can be filtered out so that they are not evaluated. This is a minor

performance win as these functions are cheap to evaluate compared to the ren-

der time. However, this second analysis step prevents animations that will be

overwritten but which have changed parameters from causing the attribute to be

updated.

Using these optimisation if no animations have changed then the target attribute

does not need to be updated. If no target attributes are updated—as is often the

case such as when all animations are frozen—then the graphic is not redrawn. But

even if only a few target attributes are not updated there is still a performance

gain due to this optimisation as the dirty region of the image that needs to be

redrawn may be smaller.

Following these optimisations I attempted to compare the results against the

baseline but was unable to record sensible results from all the test cases. For

those cases for which I could record results, the time spent in the animation loop

after introducing the optimisations was about 50% less than before introducing

the optimisations. When no animations were active, the time spent in the loop

was nearly 100% less which is to be expected.

6.7 Threading

My initial understanding of the Mozilla codebase lead me to expect that there

was potential for race conditions to arise as the timer thread performing the

animation may access the same parts of the model as the thread responsible for

executing scripts. As a result I implemented locking for these parts of the model.

I have since been informed that due to the implementation of timers and script

execution this situation should not arise. As a result the part of the code that

deals with locking is not necessary and will be removed.

Chapter 7

Conclusions

On 4th November 2005 I submitted a patch to the Mozilla defect tracking system

containing my implementation of SMIL Animation. This chapter describes the

contents of this patch and my concluding thoughts on the future of this work and

the associated technologies.

7.1 Implementation status

Table 7.1 outlines the features of SMIL Animation that I have successfully im-

plemented in this project. This feature set corresponds to a basic SMIL model

as was my intention in undertaking this project. The model is basic in that some

of the more complex features such as syncbase timing and event-based timing

are not implemented. However, nearly all the fundamental timing and anima-

tion properties are fully implemented. The only missing feature in this area

is calcMode support which is partially implemented and the remaining work is

minimal.

I describe the implemented feature set as a ‘model’ because the area in which this

code is most lacking is in the bindings to SVG data-types. As I have described in

Chapter 6 this is due to ongoing discussions in the Mozilla developer community

and is outside of my control.

85

CHAPTER 7. CONCLUSIONS 86

Table 7.1: SMIL Animation features implemented in this project.

Feature Status

<animate>

xlink:href Not implemented

attributeName Implemented

attributeType Not implemented

begin, end

offset values Implemented

syncbase values Not implemented

event values Not implemented

repeat values Not implemented

accessKey values Not implemented

wallclock values Not implemented

dur Implemented

min, max Implemented

restart Implemented

repeatCount Implemented

repeatDur Implemented

fill Implemented

calcMode Linear and spline modes only

values Implemented

keyTimes Implemented

keySplines Implemented

from Implemented

to Implemented

by Implemented

additive Implemented

accumulate Implemented

<set> Not implemented

<animateMotion> Not implemented

CHAPTER 7. CONCLUSIONS 87

Table 7.1 (continued)

Feature Status

<animateColor> Not implemented

<animateTransform> Not implemented

Interface ElementTimeControl Implemented

Interface TimeEvent Not implemented

Interface
SVGAnimationElement

Not implemented

SVGSVGElement animation related DOM methods

pauseAnimations Implemented

unpauseAnimations Implemented

animationsPaused Implemented

getCurrentTime Implemented

setCurrentTime Not implemented

dur Implemented

Related features

Animation of SVG types Not implemented (a basic implementation for
SVGAnimatedLength’s is provided for testing
however)

Animation of CSS properties Not implemented

Proper handling of relative
values

Not implemented

At the time of writing the feedback I have received to this work has been positive

and it is my expectation that the code produced will ultimately become part

of the Mozilla codebase. Before that occurs however, this code will undergo

the review process that is common to all contributions to Mozilla and this will

undoubtedly involve changes to the code before it is accepted.

Once this code becomes part of the Mozilla codebase it will be much easier for

other developers to contribute to producing a complete SMIL implementation.

It my hope that this work will be complete in time for the next major revision

of the Firefox Web browser due in 2006. Because of extensive the distribution of

CHAPTER 7. CONCLUSIONS 88

Mozilla Firefox this would represent a significant step toward providing a more

sophisticated Web application platform by extending the number of users able

to view SMIL animated content by hundreds of millions.

The realisation of this goal however may be delayed due to rework of the Mozilla

layout engine and may be complicated if incompatibilities between SMIL imple-

mentations are not resolved. Fortunately some individuals have taken on the

task of testing competing implementations and documenting their discrepancies.

These efforts deserve wider recognition and may benefit from pooling their test

cases in a coordinated manner.

In the interim period Schepers (2005) has developed SmilScript. SmilScript is an

implementation of SMIL Animation using script. This allows SVG implementa-

tions that do not yet support SMIL to run a script which will provide the SMIL

behaviour. As Schepers acknowledges, this approach has several limitations. In

particular, because the implementation is script-based proper separation of ani-

mation and base values is not possible and the performance is limited. Schepers

acknowledges that this is only a temporary measure but nevertheless it is a very

useful measure whilst SMIL in SVG is not widely implemented and may encour-

age SVG authors to experiment with this technology.

As for this project, I consider that it has achieved all the targets set. The goal

of developing a basic model, integrated with the codebase has been reached as

outlined above; the performance is adequate as described in the previous chapter;

and the risks identified have not eventuated. Furthermore, I have produced

documentation to assist developers to continue this work and have begun the

process that I expect will ultimately result in this code being accepted into the

target codebase.

7.2 Future directions

In his keynote address at the SVG Open 2005 Conference, Cagle (2005) acknowl-

edged that, “Open standards is a powerful concept, and it works against the

CHAPTER 7. CONCLUSIONS 89

status quo”. For some companies, SVG may represent a threat to their control

of a particular market and instead may push them to “compete on that one qual-

ity that most companies prefer not to compete on—quality”. This observation

picks up on an unavoidable fact about the future success of SVG and indeed the

Web platform as a whole: it will not be decided based on technical merit alone.

Many have speculated on the implications of Adobe—producer of the most widely

used SVG viewer to date—merging with Macromedia—producer of Flash. The

result of this move may become a turning point for SVG, for better or worse.

Similarly Microsoft’s XAML technology represents another technology that will

certainly influence the industry even if only because it is backed by Microsoft.

It is possible to extend speculations even to the political domain. For example, if

diplomatic relations between the United States and emerging Asian nations such

as China prevent companies such as Microsoft from gaining a strong position in

these markets then this would certainly affect the adoption and popularity of

open alternatives such as those technologies that make up the Web platform.

Whatever the future holds, the Web platform already enables millions of appli-

cations from banking to email. It provides users with greater physical freedom

and allows computer applications to be extended to wider audiences as it does

not discriminate against specific hardware or software platforms. Yet it is worth

pausing at this moment to consider the significance of this development. Tech-

nological progress should not remain unchecked.

Clearly the Web platform can provide benefits to many but it can equally be said

that in an era where information is regarded as a corporation’s most valuable as-

set the Web platform places more information in the hands of those who own

the applications. Increasingly, individuals are at the mercy of corporations and

governmental regulations to ensure that their information is not used unscrupu-

lously.

Similarly, by enabling applications to be moved from the desktops of customer

service assistants to customers’ living rooms, individuals may be expected to

interact with computers rather than people. There are two obvious implications

of this trend.

CHAPTER 7. CONCLUSIONS 90

Firstly, such a transition threatens the jobs of those who would otherwise serve

customers personally. The shrinking of various sectors of employment has accom-

panied nearly every technological change, but as Mesthene (1970, p. 27) points

out there is no evidence to suggest that this will ultimately deprive the popula-

tion of work. Rather, using the example of the introduction of the automobile,

Mesthene describes how although some jobs were eliminated, the total number

of jobs in the US did not decline as a result of this new technology but rather

increased. In the same way the Web platform may cause some workers to be

displaced but it unlikely to lead to large-scale unemployment.

Another implication of making individuals the direct users of corporate or gov-

ernment applications that many have noted is the possibility of creating a new

lower class based on technological competence and access to technology: the well-

documented ‘digital divide’. The complementary situation where the technologi-

cally-savvy control society—technocracy—has clearly not eventuated (Elsner 1967,

p. 186) but this less confronting situation may have already arrived. As a result

the International Telecommunication Union (ITU), an agency of the United Na-

tions have established the World Summit of the Information Society to tackle

these issues. The results of this summit are yet to become clear but the very

establishment of the summit confirms a widening awareness of this situation. It

is confirmed by statistical measures (Norris 2001) as well as anecdotal evidence

such as the struggles experienced by the elderly in attempting to use automatic

teller machines (Williams 1997). At the current time it seems that the only

factors preventing a technology-driven social division from being further exag-

gerated are governmental regulations and the conscience of various advocates and

organisations.

Another less obvious implication of this change is that computer applications

typically provide fewer avenues for redress in the case of a mistake or exceptional

circumstances when compared to interacting with another person. The net ef-

fect is that unless specific measures are taken to ensure these situations can be

properly handled individuals may be disempowered or, more subtly, the values

of our society may shift.

Mesthene (1970, p. 50) asserts that technology that can bring about changes in

CHAPTER 7. CONCLUSIONS 91

social values by altering the range of choices available and the costs associated

with them. If the cost of fixing computer mistakes is too great what will be the

effect on the value we place on accurate (as opposed to precise) information—on

truth? Or if the effort required to accommodate situations beyond the pro-

gramming of computer applications is too great, what will be the result for our

notions of giving proper treatment to all people—to fairness and justice? Or will

we become less flexible like the computer programs we interact with?

These are interesting topics, but they go well beyond this project. For now we

note that these concerns are valid and deserve the attention being brought to

bear on them by various advocates. Nevertheless I consider that SVG has at

least three redeeming qualities in this regard.

Because SVG is an open standard it does not discriminate against any particular

implementation or any particular hardware or software. It is therefore possible

for SVG to be realised on lower-cost platforms which in turn lowers the barrier

for entry that might otherwise exclude impoverished peoples and nations from

participating in the technological market.

A second quality of SVG that may be argued in its defence against the criticisms I

have outlined is that it enables the development of more intuitive user interfaces.

Declarative animation as I have implemented could be used to provide visual cues

to a user who is unfamiliar with computers as to what interaction is expected.

This quality may be make computers more accessible for those with disabilities

or with limited computer skills.

Finally, SVG is a client-side technology. By shifting more interaction to the

client-side, less information needs to be exchanged with a central server which

may mitigate privacy issues, particularly as some applications may be able to be

run in an offline mode.

For these reasons I believe SVG as a technology can at least be said to provide

as much potential for charity as it does for harm. It is my hope that through this

Capstone project I have contributed to realising a richer, more intuitive platform

for future technological applications and in a manner that will benefit most.

Glossary

AJAX Asynchronous JavaScript and XML. A combination of client-side Web

technologies that allows a more interactive communication pattern between

a Web browser and Web server.

API Application Programming Interface. The protocol by which an application

communicates with another software component.

ARPANET Advanced Research Projects Agency Network. A project of the

U.S. Department of Defence that formed the basis for much of the technol-

ogy that is now at the core of the Internet architecture.

CSS Cascading Style Sheets. A standard for describing formatting information

to be applied to a document, typically an HTML Web page.

DOM Document Object Model. An object-oriented API for manipulating an

XML document.

DTD Document Type Definition. The formal definition of a particular class of

XML or SGML documents.

ECMAScript A standardised version of the JavaScript programming language.

Firefox A popular Web browser produced by the Mozilla project.

Flash A technology owned by Macromedia commonly used on Web pages to

produce interactive graphics.

HTML Hypertext Markup Language. The format used for describing nearly

every Web page on the Internet.

92

CHAPTER 7. CONCLUSIONS 93

JavaScript A scripting language developed by Netscape that is commonly used

for client-side Web development.

MMS Multimedia Message Service. A system used to deliver messages over

wireless networks (typically to mobile phones) that may include a multi-

media component.

MySQL A popular open-source database often used in Web development projects

along with a scripting language such as PHP.

PHP PHP: Hypertext Processor. A popular scripting language commonly used

for server-side Web development.

PostgreSQL An advanced open-source database used in many Web develop-

ment projects.

Python A popular scripting language used in many areas including Web devel-

opment.

RTTI Run-Time Type Information. A feature of the C++ language that allows

the type of objects to be determined during program execution.

Ruby A markup language for annotating text such as is commonly found in

Japanese writing.

SGML Standard Generalised Markup Language. A text format for representing

structured information that is a predecessor to XML.

SMIL Synchronised Multimedia Integration Language. An XML-based lan-

guage used to describe elements in an interactive audiovisual display.

SVG Scalable Vector Graphics. An XML-based language for describing vector

graphics.

W3C World Wide Web Consortium. The standards body responsible for many

of the technology standards in use on the Web.

XHTML A successor to HTML that uses XML as an underlying format.

CHAPTER 7. CONCLUSIONS 94

XML Extensible Markup Language. A common data format for representing

structured information upon which many standards are based.

XPCOM Cross-Platform Component Object Module. A component technology

developed by and used in the Mozilla project.

XSLT Extensible Stylesheet Language Transformations. An XML-based lan-

guage for transforming an XML data source into a (typically XML-based)

alternative form.

XUL XML User Interface Language. A markup language developed by the

Mozilla project for describing the components of a user interface.

References

Akroyd, M. (1996), ‘Antipatterns : Vaccinations against object misuse’, Object

World West, San Francisco .

Aulenback, S. (2004), SVG as the visual interface to Web services, in

V. Geroimenko & C. Chen, eds, ‘Visualizing Information Using SVG and

X3D’, Springer, chapter 4, pp. 85–98.

Beck, K. (2000), Extreme programming explained : embrace change, Addison-

Wesley, New Jersey.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W.,

Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J.,

Marick, B., Martin, R. C., Mellor, S., Schwaber, K., Sutherland, J. &

Thomas, D. (2001), ‘The agile manifesto’.

Available at: http:// agilemanifesto.org/

Bell, G. (1999), The folly of prediction, in P. J. Denning, ed., ‘Talking Back

to the Machine : Computers and Human Aspiration’, Springer, chapter 1,

pp. 1–14.

Berners-Lee, T. (1990), ‘WorldWideWeb - summary’.

Available at: http://www.w3.org/History/ 19921103-hypertext/ hypertext/

WWW/Summary.html

Berners-Lee, T., Hendler, J. & Lassila, O. (2001), ‘The Semantic Web’, Scientific

American 284(5), 34–43.

95

http://agilemanifesto.org/
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/Summary.html
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/Summary.html

REFERENCES 96

Boehm, B. (2000), Spiral development : Experience, principles, and refinements,

Special Report CMU/SEI-00-SR-08, The Software Engineering Institute.

Bucken, M. W. (2003), ‘Client-side Java ain’t dead yet’, Application Development

Trends magazine .

Available at: http://www.adtmag.com/article.asp? id=7081

Bunker, D. (n.d.), ‘Why to avoid Flash’.

Available at: http:// people.westminstercollege.edu/ students/ d-b1649/

opinions/ avoid flash.html

Cagle, K. (2004), Distributed user interfaces : Toward SVG 1.2, in V. Geroimenko

& C. Chen, eds, ‘Visualizing Information Using SVG and X3D’, Springer,

chapter 6, pp. 119–152.

Cagle, K. (2005), ‘The future of SVG and the Web’, Understanding XML .

Available at: http://www.understandingxml.com/archives/ 2005/ 08/

the future of s.html

Collins, S. (2002), ‘C++ portability’.

Available at: http://www.mozilla.org/ hacking/ cpp portability/

Deakin, N. (2003), ‘Building technologies with baby steps’.

Available at: http://www.xulplanet.com/ndeakin/ article/ 215/

Dsouza, A., Hildebrand, K. & Israeli, G. (2004), ‘Conceptual architecture of

Mozilla’.

Available at: http://www.cs.uwaterloo.ca/∼kdhildeb/ cs746/ conceptual.pdf

Elsner, Jr., H. (1967), The Technocrats : Prophets of automation, Syracuse Uni-

versity Press.

Fowler, M. (1999), Refactoring : Improving the design of existing code, Addison-

Wesley, Massachusetts.

Futrell, R. T., Shafer, D. F. & Shafer, L. I. (2002), Quality software project

management, Prentice Hall.

http://www.adtmag.com/article.asp?id=7081
http://people.westminstercollege.edu/students/d-b1649/opinions/avoid_flash.html
http://people.westminstercollege.edu/students/d-b1649/opinions/avoid_flash.html
http://www.understandingxml.com/archives/2005/08/the_future_of_s.html
http://www.understandingxml.com/archives/2005/08/the_future_of_s.html
http://www.mozilla.org/hacking/cpp_portability/
http://www.xulplanet.com/ndeakin/article/215/
http://www.cs.uwaterloo.ca/~kdhildeb/cs746/conceptual.pdf

REFERENCES 97

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995), Design patterns :

Elements of re-usable object-oriented software, Addison-Wesley.

Garrett, J. J. (2005), ‘Ajax : a new approach to web applications’.

Available at: http://www.adaptivepath.com/publications/ essays/ archives/

000385.php

Granneman, S. (2005), Don’t Click on the Blue E!, O’Reilly.

Hearn, D. & Baker, M. P. (1997), Computer graphics : C version, 2nd edn,

Prentice Hall.

Himanen, P., Torvalds, L. & Castells, M. (2002), The Hacker Ethic, Random

House.

Hoffmann, O. (2005), ‘Examples and tests for SVG animation’.

Available at: http:// olaf.s02.user-portal.com/ svgtest/

King, P., Schmitz, P. & Thompson, S. (2004), Behavioral reactivity and real time

programming in XML : Functional programming meets SMIL animation,

in ‘DocEng ’04: Proceedings of the 2004 ACM symposium on Document

engineering’, ACM Press, New York, NY, USA, pp. 57–66.

Lancaster, D. (1998), ‘More on cubic spline math’.

Available at: http://www.tinaja.com/ text/ bezmath.html

Lussier, R. K. (n.d.), ‘Key splines graph tool’.

Available at: http://www.burningpixel.com/ svg/ keySplineTool.htm

Mackinnon, T., Freeman, S. & Craig, P. (2000), ‘Endo-testing: Unit testing with

mock objects’.

Available at: http://www.connextra.com/aboutUs/mockobjects.pdf

Markham, G. (2005), ‘XAML and XUL’.

Available at: http://weblogs.mozillazine.org/ gerv/ archives/ 2005/ 05/ xaml

and xul.html

http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://olaf.s02.user-portal.com/svgtest/
http://www.tinaja.com/text/bezmath.html
http://www.burningpixel.com/svg/keySplineTool.htm
http://www.connextra.com/aboutUs/mockobjects.pdf
http://weblogs.mozillazine.org/gerv/archives/2005/05/xaml_and_xul.html
http://weblogs.mozillazine.org/gerv/archives/2005/05/xaml_and_xul.html

REFERENCES 98

Marson, I. (2005), ‘Firefox : the alternative history’, ZDNet UK .

Available at: http:// insight.zdnet.co.uk/ software/ applications/ 0,39020466,

39208866,00.htm

McFarlane, N. (2003a), ‘Longhorn and Mozilla : Birds of a feather’, DevX.com .

Available at: http://www.devx.com/DevX/Article/ 17899

McFarlane, N. (2003b), Rapid Application Development with Mozilla, Prentice

Hall.

Mesthene, E. G. (1970), Technological change : Its impact on man and society,

Harvard University Press.

mozilla.org (2000), ‘About NSPR’.

Available at: http://www.mozilla.org/ projects/ nspr/ about-nspr.html

mozilla.org (2005a), ‘Good first bugs’.

Available at: http://www.mozilla.org/ contribute/ hacking/ first-bugs/

mozilla.org (2005b), ‘Mozilla foundation reorganization’.

Available at: http://www.mozilla.org/ reorganization/

Neumann, A. & Winter, A. M. (2004), ‘Comparing .SWF (ShockWave Flash)

and .SVG (Scalable Vector Graphics) file format specifications’.

Available at: http://www.carto.net/ papers/ svg/ comparison flash svg/

Norris, P. (2001), Digital Divide : Civic engagement, information poverty, and

the Internet worldwide, Cambridge University Press.

Oeschger, I., Murphy, E., King, B., Collins, P. & Boswell, D. (2002), Creating

applications with Mozilla, O’Reilly.

Parent, R. (2001), Computer Animation, Morgan Kaufmann.

Parisi, T. (2004), Correcting the great mistake, in V. Geroimenko & C. Chen, eds,

‘Visualizing Information Using SVG and X3D’, Springer, chapter Foreword,

pp. vii–viii.

http://insight.zdnet.co.uk/software/applications/0,39020466,39208866,00.htm
http://insight.zdnet.co.uk/software/applications/0,39020466,39208866,00.htm
http://www.devx.com/DevX/Article/17899
http://www.mozilla.org/projects/nspr/about-nspr.html
http://www.mozilla.org/contribute/hacking/first-bugs/
http://www.mozilla.org/reorganization/
http://www.carto.net/papers/svg/comparison_flash_svg/

REFERENCES 99

Rowley, T., Morris, J., Watt, J. & Fritze, A. (2005), ‘Implementing SVG in a

web browser : Past, present, and future of Mozilla SVG’, SVG Open 2005 .

Available at: http://www.svgopen.org/ 2005/ papers/MozillaSVG/

Schepers, D. (2005), ‘SmilScript’.

Available at: http://www.vectoreal.com/ smilscript/

Schmidt, D. & Stephenson, P. (1994), Achieving reuse through design patterns :

A case study of evolving object-oriented system software across OS plat-

forms, in ‘Proceedings of the 3rd SIGS C++ World Conference 1994’.

Available at: http://www.cs.wustl.edu/∼schmidt/PDF/C++-world-94.pdf

Schmitz, P. L. (n.d.), ‘Timing and animation support for Batik : Detailed design

document’.

Available at: http://www.ludicrum.org/ plsWork/ papers/BatikSMILsupport.

htm

Shirley, P. (2002), Fundamentals of computer graphics, A K Peters.

svg.org (2005), ‘Shipping and announced SVG phones’.

Available at: http:// svg.org/ special/ svg phones

Torvalds, L. (1999), The Linux edge, in C. DiBona, S. Ockman & M. Stone, eds,

‘Open Sources’, O’Reilly, pp. 101–112.

WaSP (n.d.), ‘The Acid2 browser test’.

Available at: http://www.webstandards.org/ act/ acid2/

Watt, A. & Policarpo, F. (2001), 3D Games : Real-time rendering and software

technology, Vol. One, Addison-Wesley.

WHATWG (2004), ‘Web Hypertext Application Technology Working Group

charter’.

Available at: http://www.whatwg.org/ charter

WHATWG (2005), ‘Web Applications 1.0’.

Available at: http://www.whatwg.org/ specs/web-apps/ current-work/

http://www.svgopen.org/2005/papers/MozillaSVG/
http://www.vectoreal.com/smilscript/
http://www.cs.wustl.edu/~schmidt/PDF/C++-world-94.pdf
http://www.ludicrum.org/plsWork/papers/BatikSMILsupport.htm
http://www.ludicrum.org/plsWork/papers/BatikSMILsupport.htm
http://svg.org/special/svg_phones
http://www.webstandards.org/act/acid2/
http://www.whatwg.org/charter
http://www.whatwg.org/specs/web-apps/current-work/

REFERENCES 100

Williams, D. (1998), ‘C++ portability guide’, mozilla.org .

Available at: http://www.mozilla.org/ hacking/ portable-cpp.html

Williams, P. (1997), ‘Elderly have problems with bank ATMs’, University of

Georgia Campus News .

Available at: http://www.uga.edu/ columns/ 112497/ camp5.html

World Wide Web Consortium (2001), ‘SMIL Animation’.

Available at: http://www.w3.org/TR/ smil-animation

World Wide Web Consortium (2004), ‘The W3C workshop on Web applications

and compound documents’.

Available at: http://www.w3.org/ 2004/ 04/webapps-cdf-ws/

World Wide Web Consortium (2005a), Compound document by reference use

cases and requirements version 1.0, Working draft, World Wide Web Con-

sortium.

Available at: http://www.w3.org/TR/2005/WD-CDRReqs-20050809/

World Wide Web Consortium (2005b), Compound Document Framework 1.0 and

WICD Profiles, Working Draft, World Wide Web Consortium.

Available at: http://www.w3.org/TR/2005/WD-CDRReqs-20050809/

http://www.mozilla.org/hacking/portable-cpp.html
http://www.uga.edu/columns/112497/camp5.html
http://www.w3.org/TR/smil-animation
http://www.w3.org/2004/04/webapps-cdf-ws/
http://www.w3.org/TR/2005/WD-CDRReqs-20050809/
http://www.w3.org/TR/2005/WD-CDRReqs-20050809/

Appendix A

Requirements database

Table A.1 lists the requirements in the database created for this project. The

database also includes fields that contain a description of each requirement, com-

ments, specification URLs, criticality and the iteration where the requirement is

scheduled to be implemented. As it would be difficult to present all the data in

this report I have included only a summary of the database here.

Table A.1: Requirements database

ID Title Source Section

6 Correctly locates target elements
using xlink:href

SVG 1.1 19.2.2, 19.2.4

7 document begin coincides with the
SVGLoad event of the outermost
svg element

SVG 1.1 19.2.2

8 All animations in an SVG
document fragment must stop in
the event of any error within the
document

SVG 1.1 19.2.2

9 If no xlink:href is provided, the
immediate parent element is the
animation target

SVG 1.1 19.2.4

13 attributeName attribute SVG 1.1 19.2.5

101

APPENDIX A. REQUIREMENTS DATABASE 102

Table A.1 (continued)

ID Title Source Section

14 attributeType attribute SVG 1.1 19.2.5

15 begin attribute SVG 1.1 19.2.6

16 begin: offset values SVG 1.1 19.2.6

17 begin: syncbase SVG 1.1 19.2.6

18 begin: event values SVG 1.1 19.2.6

19 begin: repeat value SVG 1.1 19.2.6

20 begin: access key SVG 1.1 19.2.6

21 begin: wallclock SVG 1.1 19.2.6

22 begin: indefinite SVG 1.1 19.2.6

23 dur attribute SVG 1.1 19.2.6

24 dur: clock value SVG 1.1 19.2.6

25 dur: media SVG 1.1 19.2.6

26 dur: indefinite SVG 1.1 19.2.6

27 end attribute SVG 1.1 19.2.6

28 end: offset SVG 1.1 19.2.6

29 end: syncbase SVG 1.1 19.2.6

30 end: event SVG 1.1 19.2.6

31 end: repeat SVG 1.1 19.2.6

32 end: access key SVG 1.1 19.2.6

33 end: wallclock SVG 1.1 19.2.6

34 end: indefinite SVG 1.1 19.2.6

35 min attribute SVG 1.1 19.2.6

36 max attribute SVG 1.1 19.2.6

37 restart attribute SVG 1.1 19.2.6

38 restart: always SVG 1.1 19.2.6

39 restart: whenNotActive SVG 1.1 19.2.6

40 restart: never SVG 1.1 19.2.6

41 repeatCount attribute SVG 1.1 19.2.6

APPENDIX A. REQUIREMENTS DATABASE 103

Table A.1 (continued)

ID Title Source Section

42 repeatDur attribute SVG 1.1 19.2.6

43 fill: remove SVG 1.1 19.2.6

44 fill: freeze SVG 1.1 19.2.6

45 fill attribute SVG 1.1 19.2.6

46 Clock values syntax SVG 1.1 19.2.6

47 calcMode attribute SVG 1.1 19.2.7

48 calcMode: discrete SVG 1.1 19.2.7

49 calcMode: linear SVG 1.1 19.2.7

50 calcMode: paced SVG 1.1 19.2.7

51 calcMode: spline SVG 1.1 19.2.7

52 values attribute SVG 1.1 19.2.7

53 keyTimes attribute SVG 1.1 19.2.7

54 keySplines attribute SVG 1.1 19.2.7

55 from attribute SVG 1.1 19.2.7

56 to attribute SVG 1.1 19.2.7

57 by attribute SVG 1.1 19.2.7

58 Animation values must be legal SVG 1.1 19.2.7

59 additive attribute SVG 1.1 19.2.8

60 additive: sum SVG 1.1 19.2.8

61 additive: replace SVG 1.1 19.2.8

62 accumulate attribute SVG 1.1 19.2.8

63 accumulate: sum SVG 1.1 19.2.8

64 accumulate: none SVG 1.1 19.2.8

65 Animation should inherit SVG 1.1 19.2.9

66 animate element SVG 1.1 19.2.10

67 set element SVG 1.1 19.2.11

68 animateMotion element SVG 1.1 19.2.12

69 animateColor element SVG 1.1 19.2.13

APPENDIX A. REQUIREMENTS DATABASE 104

Table A.1 (continued)

ID Title Source Section

70 animateTransform element SVG 1.1 19.2.14

71 Animation restrictions must be
enforced

SVG 1.1 19.2.15

72 Only certain elements can be
animated by animateMotion

SVG 1.1 19.2.15

73 Attributes that are not animatable
cannot be the target of an
animation

SVG 1.1 19.2.15

74 Support for additive animation
depends on the syntax used.

SVG 1.1 19.2.15

75 Certain data types are additive SVG 1.1 19.2.15

76 Certain data types can be targeted
by animate elements

SVG 1.1 19.2.15

77 Certain data types can be targeted
by set elements

SVG 1.1 19.2.15

78 Certain data types can be targeted
by animateColor elements

SVG 1.1 19.2.15

79 Only transform-lists can be
targeted by animateTransform
elements

SVG 1.1 19.2.15

80 Additive animation SVG 1.1 19.2.8

81 DOM interfaces SVG 1.1 19.5

82 Interface ElementTimeControl SVG 1.1 19.5

83 Interface TimeEvent SVG 1.1 19.5

84 Interface SVGAnimationElement SVG 1.1 19.5

85 Interface SVGAnimateElement SVG 1.1 19.5

86 Interface SVGSetElement SVG 1.1 19.5

87 Interface
SVGAnimateMotionElement

SVG 1.1 19.5

88 Interface SVGMPathElement SVG 1.1 19.5

APPENDIX A. REQUIREMENTS DATABASE 105

Table A.1 (continued)

ID Title Source Section

89 Interface
SVGAnimateColorElement

SVG 1.1 19.5

90 Interface
SVGAnimateTransformElement

SVG 1.1 19.5

91 Provide standard DOM2 access to
animation attributes

SVG 1.1 19.5

92 from-to-by animation SMIL Animation 3.2.2

93 Errors should be handled correctly SVG 1.1 F.2

94 Error processing shall only occur
when the presentation is updated

SVG 1.1 F.2

95 Error processing shall not occur
while redraw is suspended

SVG 1.1 F.2

96 Animations should stop when
errors occur

SVG 1.1 F.2

97 Helpful error messages should be
presented

SVG 1.1 F.2

98 Errors caused by animations should
be detected

SVG 1.1 F.2

99 Implement SVGSVGElement
animation interfaces

SVG 1.1 5.17

100 Animation should affect the CSS
cascade

SMIL Animation 3.5

101 Out of range values should be
clamped as late as possible

SMIL Animation 3.5

102 Changes via the DOM must be
reflected in the animation

SMIL Animation 3.5

103 Timing model must be end-point
exclusive

SMIL Animation 3.6.2

104 Support for hyperlinking SMIL Animation 3.6.5

105 Timing specifiers syntax SMIL Animation 3.6.7

106 Animation events SVG 1.1 16.11

APPENDIX A. REQUIREMENTS DATABASE 106

Table A.1 (continued)

ID Title Source Section

107 The timing model must handle the
edge cases described in the SMIL
Animation spec

SMIL Animation 3.6.8

108 The timing model should detect
cyclic dependencies

SMIL Animation 3.6.8, Cyclic
dependencies in
the timegraph,
Detecting Cy-
cles

109 hasFeature should reflect supported
interfaces

SMIL Animation 6.2

Appendix B

Test results

This appendix contains a selection of the test cases used in unit testing this

project. Not all test cases are shown here due to space limitations. Instead the

most important cases from the animation and timing model respectively have

been selected for inclusion here.

B.1 Animation function tests

The animation function tests cover the functionality in nsSMILAnimationFunction.

This represents most of the complexity in the animation model.

B.1.1 TestSampleAt

This case tests the most simple sampling behaviour.

Test parameters

from: 5

to: 9

duration: 2,000ms

107

APPENDIX B. TEST RESULTS 108

Sample
time (ms)

Expected
result

Notes

0 5.0

500 6.0

1999 8.5∼9

B.1.2 TestParameterPriority

For different combinations of the from, to, by, and values attributes SMIL

Animation defines which values take precedence. This case tests that behaviour.

Test parameters

duration: 5,000ms

Sample
time (ms)

Expected
result

Notes

5 0 No values set.

Set from to 5

10 0 Only from is set.

Set to to 10

1000 6.0 After setting to the animation is valid.

Set by to 10

2000 7.0 by is overridden by to.

Unset to

2000 9.0 Un-setting to lets by take effect.

Unset by

3000 0 Animation is now in error.

Set by to 10. Unset from. Set base value to -5.0.

2000 -1.0 By animation.

Set to to 20

4000 15.0 To animation.

Set values to ‘ 40 ; 60; 50;100; -10; -20 ’

APPENDIX B. TEST RESULTS 109

Sample
time (ms)

Expected
result

Notes

0 40.0 Values animation.

500 50.0

1000 60.0

3000 100.0

<last value> -20.0

Unset values

4500 17.5 Return to ‘to animation’.

B.1.3 TestValuesParsing

This case tests that bad values strings are correctly rejected.

Good
specs

Bad specs Notes

‘10’ ‘10; ’

‘ 40 ; 60; 50;100; -10; -20 ’ ‘10;’

‘30;;40’

‘30;73;40’ 73 is defined to be a bad value
in the test code

‘;10’

‘11;23 40;50’

B.1.4 TestAdditive

This case tests additive behaviour.

APPENDIX B. TEST RESULTS 110

Test parameters

duration: 2000ms

Function A

from: 5

to: 10

document position: 0

Function B

from: 5

to: 10

document position: 1

Sample
time (ms)

Expected
result

Notes

Set additive to ‘sum’

1000 15.0 Simple additive behaviour.

Set additive to ‘replace ’

1000 7.5 Simple non-additive behaviour.

Set additive to ‘ sum ’

1000 15.0 Test stripping of whitespace.

Set additive to ‘sum a ’

1000 15.0 Check additive behaviour remains unchanged af-
ter error.

B.1.5 TestKeyTimes

This case tests the behaviour of the keyTimes attribute.

Test parameters

duration: 10,000ms

values: 0; 50; 100

APPENDIX B. TEST RESULTS 111

Sample
time (ms)

Expected
result

Notes

Set keyTimes to ‘0; .8; 1’

4000 25.0 Test the simple case.

8000 50.0

9000 75.0

Set keyTimes to ‘ 0;.8;1 ’

2000 12.5 Test whitespace handling.

Set keyTimes to ‘;0; .8; 1’

2000 0.0 Test leading semi-colon causes an error.

Set keyTimes to ‘; .8; 1’

2000 0.0 Test leading semi-colon again.

Set keyTimes to ‘’

2000 0.0 Test the empty string.

Set keyTimes to ‘ ’

2000 0.0 Test the empty string again.

Unset keyTimes

4000 40.0

Set keyTimes to ‘0; .8’

4000 0.0 Not enough keyTimes.

Set keyTimes to ‘0; .8; .9; 1’

4000 0.0 Too many keyTimes.

Set keyTimes to ‘0; 1; .8’

4000 0.0 keyTimes are not in ascending order.

Set keyTimes to ‘0; .8; 1.1’

4000 0.0 keyTimes must be between 0 and 1 inclusive.

Set keyTimes to ‘0; -0.8; 1’

4000 0.0 keyTimes must be between 0 and 1 inclusive.

Set keyTimes to ‘0; .8; 1’

4000 25.0 Test recovering from an error.

Set values to ‘0; 50’. Set keyTimes to ‘0; 1’.

APPENDIX B. TEST RESULTS 112

Sample
time (ms)

Expected
result

Notes

6000 30.0 Test two values and two keyTimes.

Set values to ‘50’. Set keyTimes to ‘ 0’.

7000 50.0 Test a single value and a single keyTime.

Set keyTimes to ‘1 ’

8000 50.0 Test a single value and a single keyTime again.

Set calcMode to ‘paced’. Set values to ‘0; 50; 100’. Set keyTimes to ‘-1; 0; 1; 34;
abc ’.

— — Test no error is reported.

Set calcMode to ‘linear’.

6000 0.0 Bad keyTime spec is not valid for calcMode ==
‘linear’.

Unset calcMode. Unset values. Set from to 10. Set to to 20. Set keyTimes to
‘0.0; 1.0’.

3500 13.5 Test from–to animation.

Set keyTimes to ‘0.0; 0.7’

3500 15.0 Test bad example from SMIL Spec.

7000 20.0

9000 20.0

Set keyTimes to ‘0.5; 1.0’

1500 10.0 Test bad spec is allowed.

4999 10.0

5000 10.0

6000 12.0

Set keyTimes to ‘0.2; 0.4’

1999 10.0 Test a very bad spec is allowed.

2000 10.0

3000 15.0

4000 20.0

9999 20.0

Set keyTimes to ‘0.4; 0.4’

APPENDIX B. TEST RESULTS 113

Sample
time (ms)

Expected
result

Notes

3999 10.0 Test another bad spec is allowed.

4000 20.0

4001 20.0

Unset from. Set keyTimes to ‘0.0; 1.0’.

3500 7.0 Test ‘to animation’.

B.1.6 TestKeySplines

This case tests the behaviour of the keySplines attribute.

Test parameters

duration: 4,000ms

Sample
time (ms)

Expected
result

Notes

Set values to ‘10; 20’. Set keyTimes to ‘0; 1’. Set calcMode to ‘ spline ’. Set
keySplines to ‘0 0 1 1’

0 10.0 SMIL Animation example (a).

1000 12.5

2000 15.0

3000 17.5

<last value> 20.0

Set keySplines to ‘.5 0 .5 1’

0 10.0 SMIL Animation example (b).

1000 11.0

2000 15.0

3000 19.0

Set keySplines to ‘0 .75 .25 1’

0 10.0 SMIL Animation example (c).

1000 18.1

APPENDIX B. TEST RESULTS 114

Sample
time (ms)

Expected
result

Notes

2000 19.3

3000 19.8

Set keySplines to ‘1 0 .25 .25’

0 10.0 SMIL Animation example (d).

1000 10.1

2000 10.6

3000 16.9

Set values to ‘10; 20; 30’. Set keyTimes to ‘0; 0.25; 1’. Set keySplines to ‘0 0 1
1; .5 0 .5 1’.

500 14.99∼15.01 Test multiple keySpline intervals.

999 19.95∼20.05

1000 19.99∼20.01

1001 19.99∼20.01

2500 24.99∼25.01

3250 28.8∼29.2

Unset keyTimes

1000 14.99∼15.01 Test the same with keyTimes.

1999 19.95∼20.05

2000 19.99∼20.01

2001 19.99∼20.01

3000 24.99∼25.01

3500 28.8∼29.2

Set keySplines to ‘ 0 .75 0.25 1 ; 1, 0 ,.25 .25 \t’
3500 26.8∼27.1

Set values to 5. Set keySplines to ‘0 0 1 1’.

0 5.0 Test a single value.

1500 5.0

Unset values. Set from to 10. Set to to 20. Set keySplines to ‘.5 0 .5 1’.

0 10.0 Test from–to animation.

APPENDIX B. TEST RESULTS 115

Sample
time (ms)

Expected
result

Notes

1000 10.9∼11.1

Set keySplines to ‘.5 0 .5 1; 0 0 1 1’

1500 0.0 Test giving too many splines produces no result.

Unset from. Set keySplines to ‘.5 0 .5 1’.

0 0 Test ‘to animation’.

1000 1.8∼2.2

In addition to these test cases the following erroneous specifications have been

tested to ensure the parser rejects them.

Specification Notes

‘0,1.1,0,0’ Range checking.

‘0,0,0,-0.1’ Range checking.

‘ 0 0 , 0 0 ,’ Stray comma.

‘1-1 0 0’ Path-style separators.

‘0 0 0’ Wrong number of values.

‘0 0 0 0 0’ Wrong number of values.

‘0 0 0 0 0 0 0 0’ Wrong number of values.

‘0 0 0 0; 0 0 0’ Wrong number of values.

‘0 0 0; 0 0 0 0’ Wrong number of values.

‘0 0 0 0;’ Trailing semi-colon.

‘0 0 0; 0’ Misplaced semi-colon.

‘;0 0 0 0’ Misplaced semi-colon.

B.1.7 TestAccumulate

This case tests the behaviour of repeating animations that accumulate their re-

sult.

APPENDIX B. TEST RESULTS 116

Test parameters

duration: 10,000ms

values: 0; 100; 120

Sample
time (ms)

Repetition Expected
result

Notes

4000 0 80.0 Test default behaviour.

4000 1 80.0

Set accumulate to ‘ sum ’

4000 0 80.0 Test sum behaviour.

4000 1 200.0

<last value> 1 240.0

Set accumulate to ‘none’

4000 1 80.0

Unset accumulate

5000 1 100.0

Unset to

7500 0 30.0 Test ‘to animation’.

7500 1 30.0

B.1.8 TestByAnimation

This case is just a further test to ensure ‘by animation’ operates as expected.

Test parameters

duration: 2,000ms

base value: 50.0

by: -50

Sample
time (ms)

Expected
result

Notes

0 50.0

1000 25.0

APPENDIX B. TEST RESULTS 117

B.2 Timed element tests

The timed element tests cover the functionality in nsSMILTimedElement. This

represents most of the complexity in the timing model.

B.2.1 TestOffsetStartup

This case tests the most simple offset start time.

Test parameters

begin: 3s

Document
time (ms)

Expected
sample

time (ms)
Notes

0 0

4000 1000

B.2.2 TestMultipleBegins

This cases tests the resolution of intervals when multiple offset values are provided

in a begin specification.

Test parameters

begin: 2s; 6s

duration: 1s

Document
time (ms)

Expected
sample

time (ms)
Notes

0 0

2999 999

3000 —

6100 100

APPENDIX B. TEST RESULTS 118

B.2.3 TestNegativeTimes

This cases tests that intervals that begin and end before the document begin are

discarded.

Test parameters

begin: -3s; 1s ; 4s

duration: 2s

Document
time (ms)

Expected
sample

time (ms)
Notes

0 —

1000 0

1001 1

2000 1000

3000 —

4007 7

B.2.4 TestSorting

This case tests the sorting of multiple offset times.

Test parameters

begin: -3s; 110s; 1s; 4s; -5s; -10s

end: 111s; -5s; -15s; 6s; -5s; 1.2s

duration: 2s

Document
time (ms)

Expected
sample

time (ms)
Notes

0 —

999 —

1005 5

1200 —

APPENDIX B. TEST RESULTS 119

Document
time (ms)

Expected
sample

time (ms)
Notes

5999 1999

6000 —

110100 100

111000 —

B.2.5 TestZeroDurationIntervals

This case tests the handling of intervals of zero-duration. In the first case the

zero length interval should play, followed by a second interval starting at the

same point. No interval should play starting at 4s however, as there is no valid

end for it. After adding a valid end (‘indefinite’) the interval at 4s should play

as well.

Test parameters

begin: 1s ;4s

end: 1s; 2s

duration: 2s

Document
time (ms)

Expected
sample

time (ms)
Notes

0 —

1000 0

1001 1

1999 999

2000 —

3000 —

4007 —

Set end to ‘1.1s; indefinite’

0 —

1000 0

APPENDIX B. TEST RESULTS 120

Document
time (ms)

Expected
sample

time (ms)
Notes

1001 1

3000 —

4007 7

B.2.6 TestMoreZeroDurationIntervals

These tests are designed to cover the cases where the pseudocode in the SMIL

Animation specification section 3.6.8 reads:

If tempEnd == tempBegin && tempEnd has already been used in

an interval calculated in this method call

{

set tempEnd to the next value in the end list that is > tempEnd

}

So, whether or not a zero length interval is included will depend on if it has

already been used in a previous calculation.

Test parameters

begin: -2s; -0.5s

end: -0.5s; 1s

duration: 2s

Document
time (ms)

Expected
sample

time (ms)
Notes

5 505 Previous begin, skip zero-length interval.

1001 —

APPENDIX B. TEST RESULTS 121

Test parameters

begin: -0.5s

end: -0.5s; 1s

duration: 2s

Document
time (ms)

Expected
sample

time (ms)
Notes

5 — No previous begin, include zero-length interval.

Test parameters

begin: -2s; -0.5s

end: -0.5s; -0.5s; 1s

duration: 2s

Document
time (ms)

Expected
sample

time (ms)
Notes

5 — Two end points that could make a zero-length
interval, so skip the first and include the second.

Test parameters

begin: 0.5s

end: 0.5s

duration: 2s

Document
time (ms)

Expected
sample

time (ms)
Notes

500 — Just a miscellaneous test to ensure the end-point
exclusive timing is working.

APPENDIX B. TEST RESULTS 122

B.2.7 TestEndSpecs

This case tests that end specifications are used in the calculation of the current

interval.

Test parameters

begin: 1s; 4s

end: 1.05s; 4.5s

duration: 2s

Document
time (ms)

Expected
sample

time (ms)
Notes

0 —

1001 1

1999 —

3500 —

4007 7

B.2.8 TestBlankBegin

Tests that when no begin spec is provided the default of zero is used.

Test parameters

end: 1s

duration: 2s

Document
time (ms)

Expected
sample

time (ms)
Notes

0 0

500 500

1000 —

APPENDIX B. TEST RESULTS 123

B.2.9 TestIndefiniteBegin

Tests the behaviour when an indefinite begin specification is used.

Test parameters

begin: indefinite

duration: 2s

Document
time (ms)

Expected
sample

time (ms)
Notes

0 —

500 —

3000 —

B.2.10 TestBadInput

Tests the behaviour when an erroneous begin specification is provided.

Test parameters

begin: ‘some random string’

duration: 2s

Document
time (ms)

Expected
sample

time (ms)
Notes

0 —

500 —

3000 —

B.2.11 TestUnsetting

This cases tests that when attributes are un-set the state of the animation is

correctly updated.

APPENDIX B. TEST RESULTS 124

Test parameters

begin: 2s

duration: 2s

Document
time (ms)

Expected
sample

time (ms)
Notes

500 —

Unset begin

600 600

Set end to 1s

1200 —

Unset end

1500 —

Set begin to 4s. Unset dur

10000 6000

B.2.12 TestRepeatSpecs

This cases tests the parsing of the repeatCount and repeatDur specifications.

Following are valid repeatCount specifications:

Specification Notes

‘1’

‘1.0’

‘0.001’

‘99999999.99999’

‘indefinite’

‘ indefinite ’ Whitespace handling.

Following are invalid repeatCount specifications:

Specification Notes

‘-1.0’ Negative repeat count.

APPENDIX B. TEST RESULTS 125

Specification Notes

‘0’ Zero repeat count.

‘0.0’ Zero repeat count.

‘0.0000000’ Zero repeat count.

‘0.0001’ Zero repeat count (as we only store to three decimal places).

‘media’ Not allowed for a repeat count.

‘junk’ Random junk.

‘ indefinite;’ Stray semi-colon.

‘indefinite 3 ’ Trailing junk.

‘’ Empty string.

Following are valid repeatDur specifications:

Specification Notes

‘3s’

‘0s’

‘indefinite ’

Following are invalid repeatDur specifications:

Specification Notes

‘-3s’ Negative duration.

‘+3s’ Signed notation is not permitted.

‘media’ Not allowed for a repeat duration.

‘’ Empty string.

B.2.13 TestRepeating

This case tests basic repeating behaviour.

Test parameters

duration: 2s

repeat count: 2

APPENDIX B. TEST RESULTS 126

Document
time (ms)

Expected
sample

time (ms)

Expected
repeat
count

Notes

0 0 0

500 500 0

2000 0 1

3000 1000 1

5000 — —

Set repeat count to 2.2

4399 399 2

4400 — —

Unset repeat count. Set repeat duration to 4.5s.

4499 499 2

4500 — —

B.2.14 TestFillMode

This case tests the behaviour of fill modes (i.e. frozen behaviour).

Test parameters

duration: 2s

Document
time (ms)

Expected
sample

time (ms)

Expected
repeat
count

Notes

0 0 0 No fill mode. Client should be active.

1999 1999 0

2000 — — Client should now be inactive.

2001 — —

Set fill mode to ‘freeze’.

0 0 0 Fill with no repetition. Client should be
active.

1999 1999 0

2000 <last value> 0 Client should now be inactive.

APPENDIX B. TEST RESULTS 127

Document
time (ms)

Expected
sample

time (ms)

Expected
repeat
count

Notes

2001 — —

Set repeat duration to 2.5s.

0 0 0 Fill with non-integral repetition. Client
should be active.

1999 1999 0

2000 0 1

2001 1 1

2499 499 1

2500 500 1 Client should now be inactive.

2501 — —

Set repeat duration to 4s.

0 0 0 Fill with integral repetition. Client
should be active.

1999 1999 0

2000 0 1

2001 1 1

3999 1999 1

4000 <last value> 1 Client should now be inactive.

4001 — —

Unset repeat duration. Set begin to -0.5s.

0 500 0 Test negative start. Client should be ac-
tive.

1499 1999 0

1500 <last value> 0 Client should now be inactive.

1501 — —

3999 1999 1

APPENDIX B. TEST RESULTS 128

B.2.15 TestRestartMode

This case tests the functioning of the restart mode.

Test parameters

begin: 2s; 4s

duration: 3s

Document
time (ms)

Expected
sample

time (ms)
Notes

0 — Test the simple case.

3000 1000

3999 1999

4000 0

6999 2999

7000 —

Set duration to 3s.

0 — Skip the early end.

3000 1000

3500 1500

4500 500

Set restart to ‘always’

0 —

6999 2999

Set restart to ‘whenNotActive’

0 —

3000 1000

3999 1999

4000 2000

6999 —

Set restart to ‘never’

0 —

APPENDIX B. TEST RESULTS 129

Document
time (ms)

Expected
sample

time (ms)
Notes

3000 1000

3999 1999

4000 2000

6999 —

B.2.16 TestMin

This case tests the behaviour of the min attribute.

Test parameters

duration: 3s

end: 2s

Document
time (ms)

Expected
sample

time (ms)
Notes

1000 1000 No min.

2500 —

Set min to 3s

1000 1000

2500 2500

3500 —

Set min to ‘media’

1000 1000 Media should be ignored.

2500 —

Set min to 3s and then to 0s

1000 1000 Setting min to 0s should have the effect of reset-
ting it.

2500 —

Set min to 3s then to -1s

APPENDIX B. TEST RESULTS 130

Document
time (ms)

Expected
sample

time (ms)
Notes

1000 1000 min < 0 generates an error but is then ignored.

2500 —

Set min to indefinite

1000 1000 Indefinite min generates an error but is then ig-
nored.

2500 —

Set min to 3s

1000 1000 Un-setting min before reaching the min condi-
tion.

Unset min

2500 — Un-setting min before reaching the min condi-
tion causes the interval to be constrained by the
end specification.

Set min to 3s

1000 1000

2500 2500

Unset min

2600 — Un-setting min after reaching the min condition
will cause it to be constrained by the end speci-
fication.

Set end to 4s. Set repeat count to 2. Set min to 5s.

1000 1000 Test with repeat.

4000 1000 The repeat count should be 1.

4999 1999 The repeat count should be 1.

5000 —

Set end to 2s. Set min to 4s. Un-set repeat count.

1000 1000 Test simple duration < min.

2500 2500

3500 —

Set end to 4s. Set repeat duration to 6s. Set min to 8s.

APPENDIX B. TEST RESULTS 131

Document
time (ms)

Expected
sample

time (ms)
Notes

1000 1000 Test repeat duration < min.

5000 2000 The repeat count should be 1.

7000 —

Set begin to ‘0s; 7s’. Set end to ‘4s; indefinite’.

1000 1000 Test restart can still occur.

5000 2000 The repeat count should be 1.

7000 0 The repeat count should be 0.

8000 1000

Unset begin. Unset end. Set duration to indefinite. Set min to 3s.

1000 1000 Test indefinite interval.

2500 2500

B.2.17 TestMax

This case tests the behaviour of the max attribute.

Test parameters

duration: 3s

Document
time (ms)

Expected
sample

time (ms)
Notes

1000 1000 No max.

2500 2500

Set max to 2s

1000 1000 Test a simple case.

2500 —

Set max to 2s then to ‘media’

1000 1000 ‘media’ should be ignored.

2500 2500

APPENDIX B. TEST RESULTS 132

Document
time (ms)

Expected
sample

time (ms)
Notes

Set max to 2s then to 0s

1000 1000 0 generates an error but is then ignored.

2500 2500

Set max to 2s then to -1s

1000 1000 max < 0 generates an error but is then ignored.

2500 2500

Set max to 2s then to indefinite

1000 1000 Indefinite is allowed.

2500 2500

Set max to 2s

1000 1000

Unset max

2500 2500 Un-setting max before reaching the condition al-
lows the interval to continue.

Set max to 2s

1000 1000

2500 —

Unset max

2600 — Un-setting max after reaching the condition can-
not extend the interval.

Set max to 4s. Set repeat count to 1.5.

1000 1000 Test constraining the simple duration.

3000 0 The repeat count should now be 1.

3999 999

4000 —

Set begin to 2s

1000 0 Test begin offset is applied correctly.

3000 1000 The repeat count should now be 1.

5000 0

APPENDIX B. TEST RESULTS 133

Document
time (ms)

Expected
sample

time (ms)
Notes

5999 999

6000 —

Unset repeat count. Unset begin. Set the duration to indefinite. Set max to 2s.

1000 1000 Test with indefinite interval.

2500 —

Unset max

1000 1000

2500 2500

Set max to 2s

3000 — Test constraining an indefinite interval after the
fact.

B.2.18 TestMinAndMax

This case tests the behaviour of the min and max attributes in combination.

Test parameters

duration: 3s

Document
time (ms)

Expected
sample

time (ms)
Notes

Set end to 2s. Set min to 3s. Set max to 2s.

1000 1000 min > max.

2100 —

Unset end. Set min to 2.5s. Set max to 2s.

1000 1000 min > max again.

2600 2600

Set min to 2.5s. Set max to 2.5s.

1000 1000 min == max.

2499 2499

APPENDIX B. TEST RESULTS 134

Document
time (ms)

Expected
sample

time (ms)
Notes

2500 —

Set end to 2s. Set min to 2.5s. Set max to 2.5s.

1000 1000 min == max again.

2499 2499

2500 —

	Background
	The Web platform to date
	Graphics on the Web
	SVG: Vector graphics for the Web platform
	SVG and Flash
	SVG: The XML-based standard
	SVG: The open standard

	Other alternatives to SVG
	State of the SVG-enabled platform
	Mozilla

	Project outline
	Declarative animation
	Features of SMIL Animation

	Declarative animation as a university project

	Engineering process
	Process influences
	The agile approach
	Open-source development
	Process overview
	Project familiarisation: Tackling a ``first bug''
	The first prototype
	The second prototype
	Requirements analysis
	Design strategy
	Test strategy
	Unit tests
	SVG test cases
	Public test suites

	Communication
	Documentation
	Risk management

	Analysis
	Analysis of the SMIL model
	Data-type agnostic animation
	Additive composition
	Timer independence
	Dynamic document model
	Dynamic dependencies

	Analysis of the Mozilla codebase
	Netscape Portable Runtime
	XPCOM
	Utility of SMIL
	The creation of a platform
	Contributing to a mature product

	Design
	Design process
	Operation overview
	Document setup
	Sampling
	Composition

	Comparison with Schmitz's model
	Timing model
	Animation controller
	Timed document root
	Timed element
	Time client interface
	Time value specification
	Interval
	Instance time
	Time value

	Animation model
	Animation registry
	Animation observer
	Compositor
	Animation function
	Animated value interface
	Animated attribute interface
	Animated element interface

	Design evaluation

	Implementation details
	Controlling the animation start-point
	Integrating SVG data types
	Frozen `to animation'
	Spline-based timing
	Ownership
	Performance tuning
	Threading

	Conclusions
	Implementation status
	Future directions

	Glossary
	References
	Requirements database
	Test results
	Animation function tests
	TestSampleAt
	TestParameterPriority
	TestValuesParsing
	TestAdditive
	TestKeyTimes
	TestKeySplines
	TestAccumulate
	TestByAnimation

	Timed element tests
	TestOffsetStartup
	TestMultipleBegins
	TestNegativeTimes
	TestSorting
	TestZeroDurationIntervals
	TestMoreZeroDurationIntervals
	TestEndSpecs
	TestBlankBegin
	TestIndefiniteBegin
	TestBadInput
	TestUnsetting
	TestRepeatSpecs
	TestRepeating
	TestFillMode
	TestRestartMode
	TestMin
	TestMax
	TestMinAndMax

