ANIMATIONS
ON FIRE

Brian Birtles, Mozilla Japan

Graphical Web 2014, Winchester

HTML version of slides: http://people.mozilla.org/~bbirtles/pres/graphical-web-2014/

http://people.mozilla.org/~bbirtles/pres/graphical-web-2014/

ANIMATION IS AWESOME...

Source: Christopher Price 2013, http://topherchris.com/post/55109717733

http://topherchris.com/post/55109717733

UVNdotTV 2011, http:/ww

Animations can be used for more than just cat gifs.
They can be used to tell stories too.

http://www.youtube.com/watch?v=Yg5BZARVDAs

21486 PST 0046 EST (2-46 BAT 05:46 UTC D846 MSK 12246 1CT

14:46 JST

14:46 JST: A powerful 9.0 earthquake hits TGhoku.

Twitter 2011, http://www. fli

Animation is essentially about using time
to convey information.

http://www.flickr.com/photos/twitteroffice/5885172082/in/photostream/

b o acile g Bl L e I

Cmn maragpmee L e e Leefran LRSS FETEY S S —

Mac \.tfe ®

-
1 - -

Bast Apphe Gorod
Easter Eggi BLALD,
4 Aemi & itw

maclife
slideshow.psd
1024 = 576

(]

whewer jpg
€40 G40

~BBY

Animation can be used as component of user interface
design to describe the results of an action.

£ i REHETTS oY 227 kw /5]
I . T AU, P
&’ Firefox

E |f‘-1 OX ;’i :1-* d iu J lu \ ."Illl._ /L: '-.‘.‘
HONESTEIVNET

o

Firefox [C2WT] SVWAIEEESIRL. 49 FHET L M ~0—EBLEERE

It can be more intuitive without cluttering the
screen or requiring extra explanation.

ANIMATION IS AWESOME...
SOMETIMES

~

But when animation
runs slowly or
hesitates, that

information is lost.

Hence for animation,

critical.

performance is

Scripted animation

4 N

In order to fix
animation
performance in Web
pages, we really need
to understand how
browsers work.

(& /

as displayed on Firefox and Chrome on Android HTC |

http://people.mozilla.org/~bbirtles/pres/graphical-web-2014/examples/simple-animation-fixed-time.html

<html=
“head=

1\

Tunction() {
lem.
remaoval);

.srticle{‘..'L
margin:
Tem;

1
I

As we follow the journey from markup to our eyeballs, we will consider how we can
make each step smoother or skip it all together.

E

<html=
“head=

1\

Tunction() {
lem.
remaoval);

article { \

margin:
Tem;

1
I

DOM tree

Markup

<html> B
<figure=

<Iimg src="image"=
=figcaption=
My cat
</figcaption=
</figure=
</html=

L. o

(function() { \
img.setAttribute("src",
‘cat-laser-eyes.gif");
figcaption.remove();

HO;

(e

. * Empty text nodes not shown

Parsing can be slow. Most browsers do it in a separate thread.

If we skip parsing while animating surely it goes faster?

Browser

Firefox 34

Chrome 36

IE 11

Firefox 34

Chrome 36

IE11

* Times are ms taken for 100,000 iterations averaged over 5 runs (lower numbers are faster)

setAttribute VS SVG DOM

A micro-benchmark suggests an
API that skips parsing is faster.

setAttribute ("ex', 'X'")

cx.baseVal .value = X

% improvement

246.6 1314 47%

155.8 204 87%

2347.6 18974 19%
transform

setAttribute (' transform’,
"translate (X, Y) ')

transform.bassval [0] .

matrix. {e, f} = {X,Y}

% improvement

2584 224.8 13%
199.6 30.6 85%
1922.8 2592 -35%

More realistic test

How about in a real-world animation?

http://people.mozilla.org/~bbirtles/pres/graphical-web-2014/examples/attribute-setting-real.svg
http://people.mozilla.org/~bbirtles/pres/graphical-web-2014/examples/attribute-setting-real.svg

setittrbute Add circles
5 o

i) It doesn’t make a lot of difference. Perhaps 3~4 fps at best.

e, ML

outttrbut [Add ocss. |

After creating a
DOM tree,
browsers construct
a render tree
suitable for painting
to the screen.

<html=
“head=

1\

Tunction() {
lem.
remaoval);

article { \

margin:
Tem;

1
I

I There are bigger performance gains to be had from the style system. l

DOM (content) tree

figure {

-

display: inline;

figcaotion {
display: none;

What happens if
we exploit the fact
that display:none
elements don’t
appear in the

render tree?

Render (frame) tree

Block ™ :
(figcaption) (

. * Shaded nodes represent the tree fthe |
. <=figcaption® was display: inline-block

= AT il 71

12.7 fps W 17.0 fps
Avg: 14.1 fps | 3K Avg: 17.1 fps

Using display:none

USING display:none

Browser Unoptimized With display:none Avg. improvement
Firefox 34 25.6fps 29fps 3.4fps / 13%
Chrome 36 5.1fps 12.5fps 7.4fps / 145%
IE11 4.8fps 7.8fps 3.0fps / 63%

* Average result after 3~5 runs. Higher numbers are better.

Remove elements from the render tree with display:none

(Firefox doesn’t show such a big difference in this case since the test case animates ‘top’ which, as
we’ll see, does not trigger reflow in Firefox so setting display:none doesn’t have as big an impact.)

parapara.mozlabs.jp

This technique improved performance for the Parapara animation project
where characters are set to display:none when they are off-stage.

http://parapara.mozlabs.jp/

DOM (content) tree Render (frame) tree

r T
Martch selectors

Compute style

Construct frames

(Of the operations
performed in the
style system,
the layout/reflow
step is often
expensive.

Determine geometry

Fﬂgure{ ‘I _‘\‘

display: inline;

Break lines

figcaotion {
display: none;

b

| o sy |0 o 7 o

ot f Events W Styles B Graphics B Storage W Gecdn

Calls | Function
* (root)
157 * Startup::XRE_Main: 4054
46 * Timer: :Fire:=
31 * neRefreshDriver: <Tick: 1068
28 ¥ PresShefl: -Paint
2 ¥ PresShel]: :Flush (Flush_Interruptiblelayout) 4125 e | ayout
1 ¥ PresShell: :Flush (Flush_Style):2 A Siyle resolution
i4 F js::RunSeript

We can measure
style resolution
and layout time
in profiling tools
in Firefox
(above) and
Chrome (below).

erts Metwork Sources | Timeline! Profiles Rescwsces Audits Conscle = e
v 0 da

i e wima || e 000 T taims 18t

7 Capture memary

] (TN NTRRARNT 7 1T T TANRRARRNNeay (1 |
RECORDS L dmi i] B = | DETAILS: 671 rrve ~ 558 v
)
1
[|
[|
B Pgink (1506 255 ——

.!EG! 5
= Ceenpotts Lo]

* 0 Apsenation Fiaeme Fired (7] LN |
B000 ma Pantin
& Becalculste St 1 st
& Layoat ' 19958 g iclle
W Update laper tree]
B Paink (155600 2555 =]

= Cempatits Liytr

* = Apsnation Freme Fired [8) L

W Recaiculate Style
o Layout

Upslate layer tree

REFLOW LOGGING IN FIREFOX

[~ 3 Inspector » Console (i) Debugger
® Net -~ __O _Q__SS @ _JS - @ Security - @ Logging
¥ Errors
Warnings
Reflows

Firefox lets you inspect reflow (layout) in the console.

® 1 Inspector » Console i) Debugger [# style Editor [# canvas

® Net ® LSS -~ @]S ® Security - @ Logging Clear
reflow: ©.28ms function OverflowableTocolbar.prototype. onlLazyResize, CustomizableUl.dsm line 401
reflow: @.09ms function exports. Modefctor<, isDisplaved, inspector,qs line 28

reflow: @.39ms function exports.ModeActor<,isDisplayed, inspector.is line 28B
reflow: @.09ms

reflow: @.21ms

B B0

Animating margin-left

Animating left (position: relative)
Animating transform

e R R

| Let’s see how different animations affect layout '

http://people.mozilla.org/~bbirtles/pres/graphical-web-2014/examples/reflow.html

Animating margin-left

Animating 1ett (position: relative)

Y [# style Edi-- | (D Performan--- | & Netw-- /4| L | % O O x
® Net ® (S5 @]5 @® Security © @ Logging Clear Filter output

reflow: @.87ms o

reflow: 8.13ms

reflow: 8.12ms

reflow: 8.12ms

reflow: 8.87ms h

FELLIE i 5 Animating margin-top causes reflow on every frame

reflow: 8.17ms v

D

Animating 1eft (position: absolute)
Animating transform

[# style Edi--- | (D Performan--- | & Netw---

Net @ (C55 @]S ® Security - © Logging Clear

m & B | % O

Filter output

But in Firefox, animating top or transform
does not trigger reflow (layout)

D

o

W

x

TRIGGERING LAYOUT

Triggers layout?*

property Firefox34 Chrome36 IE11
margin-left B P B
left (position: relative) B)
left (position: absolute) D Py
transform

* Based on my inspection of profiles from this test case.

http://people.mozilla.org/~bbirtles/pres/graphical-web-2014/examples/reflow.html

— - L o W LR SR Y

60.9 fps -
¥ Aug 607 fps
A

291 fps
& Avg' 306 fps

Comparing the performance of margin-top and transform, transform is faster because it
avoids reflow but it also benefits from layerization which we will see later.

O T

margin-top transform

AVOIDING REFLOW
Try Uil cop] 1ect marginTop S

LET SLEEPING DOGS LIE

DOM (content) tree Render (frame) tree

Match selectors
Compute style
Construct frames

Block ™
[figcaption) .

Determine geometry

" a Break lines

Since these processes can be expensive,
browsers avoid doing them until either
they have to paint, or until script asks a
qguestion about the current state.

WHAT TRIGGERS RECALC / REFLOW?

® window.getComputedStyle (elem) .color

— style recalc (typically)

® window.getComputedStyle (elem) .width ,

elem.offsetTop, elem.getClientRects () etc.

— reflow

DON'T DO THIS

(i1 =1; 1 < containerElem.children.length; i++) {
containerElem.children[i] .style.top =
containerElem.children[i-1] .offsetTop + + ;

AVOIDING FORCING REFLOW

Browser Triggering reflow Not doing that Avg. improvement
Firefox 34 42.1fps* 45.8fps* 3.7fps / 9%
Chrome 36 10.5fps 23.2fps 12.7fps / 120%
IE11 8.2fps 19.1fps 10.9fps / 132%

* Average result after 3~5 runs of test A and test B. Results for Firefox were particularly variable but were generally
only slightly faster since the testanimatesthe top property which does not trigger reflow in Firefox.

Try reading computed style (especially geometry) less often

or not at all.

http://people.mozilla.org/~bbirtles/pres/graphical-web-2014/examples/flush-layout-eg.html
http://people.mozilla.org/~bbirtles/pres/graphical-web-2014/examples/flush-layout-eg.html?besmart

Painting is often the most expensive part. Firefox creates a display list
of items to paint, then creates a layer tree into which it paints.
The layers in the tree are then composited together.

1\

Tunction() {
lem.
remaoval);

article { \
margin:
Tem;

1
I

PAINT COST

Paint complexity

Paint area

PAINT FLASHING (FIREFOX)

R 3 Inspector > Console | (i) Debugger [# Style Editor | (D Performance | = Network [@ &

i Default color unit Hex
Available Toolbox Buttons

v| Pick an element from the page Web Console

v Taggle split console Enable timestamps
¥ Responsive Design Mode Style Editor
(-[:I_Hig hlight painted area) Show original sources
35 View 9 +| Autocomplete CS5
Scratchpad

JavaScript Profiler
~ Show Gecko platform data

+| Grab a color from the page

[We can see exactly what area is being painted]

PAINT RECTANGLES (CHROME)

Q, Elements MNetwork Sources | Timeline| Profiles Resources Audits Console

® © ¥ ¥

) Capture stacks I

) Capture memory

RECORDS

Console Search Emulation ‘ Rendering

@Show paint rectangles]

| Show composited layer borders

| Show FP5 meter
] Enable continuous page repainting

| Show potential scroll bottlenecks

PAINT FLASHING #1

(R 3 Inspec- -@ Debug--- |[#£ Style Edi-- | (9 Performan--| = Netw-- | = L | 4 O 0 x

® Net @® (CSS G ® Security © © Logging Clear Filter output
I reflow: 8.23ms function ﬁ, Peueal min.js line &

reflow: 8.83ms

PAINT FLASHING #2

Arimating with
margin-left

Animating with
transform

When animating transform we only paint once at the start.
This is because it gets put in its own layer.

~

-
Net

® (€55

® Security

[7 style Edi---

@ Logging

@ Performan---

Clear

MNetw: -

m = B % 00

Filter ou Ln_n_.' r

x

PAINT FLASHING #3

When animating independent areas Chrome seems to paint the
union of dirty areas so layerization can be more important there.

[k 3 Inspec- -@ Debug- | [# Style Edi-- | () Performan-- = Netw-- | ™ L | O 2 x
Net

L ® (5SS ® Security ©~ © Logging Clear Filter output

PAINT COMPLEXITY

® box-shadow

® Dborder-radius

e SVG filters...

However, SVG filters are often hardware accelerated.
Sometimes the combination of features is what is slow.

Animating stdDeviation on Animating transform (scale)of

<feGaussianBlur> — 33fps blurred copy — 49fps

Try replacing expensive effects with simpler ones

PRE-RENDERING

Browser <iframe src="svg">
Firefox 34 1.9 fps 49.5 fps
Chrome 36 11.18 fps 49.7 fps
IE 11 5.8 fps 50.9 fps

Pre-render expensive assets

We can sometimes make things faster by pre-rendering.
Desktop apps, native apps, Flash apps, everyone does it.

PRE-RENDERING

Browser <iframe src="svg">
Firefox 34 1.9 fps 49.1 fps 49.5 fps
Chrome 36 11.18 fps 13.0 fps* 49.7 fps
IE 11 5.8 fps 15.5 fps 50.9 fps

* Some rendering defects

Try using to embed SVG images instead of

<iérane> [<object> | <embos> |

Alternatively, for SVG, simply referring to the SVG using instead of

<iframe> lets the browser make more optimizations. Especially Firefox.

HARDWARE ACCELERATION
e Paths, text [ty

e Filters Coming
e Compositing (3

Most browsers hardware accelerate layer compositing.
That means they can often paint an animated element once then
just change its transform, opacity etc. and let the GPU re-composite.
That saves a lot of painting.

WHAT GETS A LAYER?

Animated transform Animated opacity 3D transform

It’s up to the browser what gets a layer.
Typically it’s things like the above.

INSPECTING LAYERS

® Firefox: about:config

— layers.draw-borders 10 true

(requires layers.offmainthreadcomposition.enabled U0 be true)

e Chrome: DevConsole — Rendering — Show composited
layer borders

Console Search Emulation | Rendering
Show paint rectangles
ﬁé Show composited layer borders
] Show FPS meter
Enable centinuous page repainting

Show potential scroll bottlenecks

"

Music

1

INSPECTING LAYERS

1B B o 6:04 e Settings B B 6:04 P
Settings
- ZGB available = :
Media s_turage S
3.9 GB available
Device

@ Device information >
» Downloads b
= E;:-*EEW e >
® Develo
® per S
i@ 'mprove Firefox 0S >
© Help >

Settings 12 B 6:04 Pm

4 Developer

Low-precision painting

Low-precision transparency

Hardware composer
Draw tile borders O
(Draw layer borders [:])
Dump layers tree)
Cards View: Screenshots

Window management

l Firefox OS l

INSPECTING LAYERS

INSPECTING LAYERS

..# ‘,"1\ .».‘\
s ?

“transform

LAYERS AND TRANSITIONS

Animating with
margin-left

Animating with
transform

In the previous example, we can see why the transform animation
only gets painted once. That element has its own layer.

[k 3 Inspec- -@- Debug- | [# Style Edi-- | (@ Performan-- = Netw-- | [L |4 O 0 x

® Net ® (CSS : ® Security ©~ © Logging Clear Filter output
] style:normal weight:5688 stretch:normal src index:@)

source: http://localhost:8808/fonts/OpenSans-Semibold. ttf

LAYERS AND SVG ANIMATION

Layerization is performed by the browser so it can
automatically do it for SVG (SMIL) animation too.

LAYERS AND SCRIPTED ANIMATION

_ & 5"“*"f"**"‘*"";]:__

] G 5L,

And even for scripted animation, the browser can detect that
an element is moving a lot and decide it would benefit from
being on a separate layer.

(The red boxes in this example indicate image layers.)

STARTING AN ANIMATION

‘

Often, however, the browser won’t create a layer until an element starts
animating. Sometimes that can be too late and can cause the animation
to stutter at the start as the browser sets up the layer.

ENTER will-change

will-change :<property>

B will-change:transform

B will-change:opacity

will-change:scroll-position
wlill-change:contents

transferm:translateZ{0)

4 h

will-change:transform/
opacity/etc. lets the
browser create the
layer in advance if it

thinks that would help

improve performance.

transform:translateZ(0)
doesn’t work cross-

browser

(&)

Firefox: need layout.css.will-change.enabled In

about:config.

APPLYING will-change

A,

Apply will-change

APPLYING will-change

A,

Apply will-change

YOUR BROWSER IS A JANK

Interrupt

Apart from low frame-rates, animation performance is affected by other
processes on the same thread like layout, garbage collection,
or other scripts, that cause the animation to stop and start (jank).

COMPOSITOR ANIMATION

Main thread Compositor

Layout

%[

[To avoid jank, some animations can be run on a separate thread/process.]

ANIMATION ON THE COMPOSITOR

© Spin with script C Spin with CSS

Interrupt

l Unlike animations running on the main thread which stop and start... l

ANIMATION ON THE COMPOSITOR

© Spin with script G Spin with CSS

Interrupt

l ... these animations continue along uninterrupted. l

NOT SO FAST...

® Representable by compositor? (e.g. transform, opacity)
e Supported platform? (e.g. Firefox OS)

(layers.offmainthreadcomposition.async-animations —> U’U E)

e Other limitations: top/left also animated?
e Controlled by the browser? (e.g. CSS Animations)

4)

But not everything can be animated in this way.
In particular, when the browser doesn’t know all the parameters
of the animation—Ilike most scripted animations—the browser can’t
delegate the animation to another thread/process.

WHAT ABOUT SCRIPT?

elem.animate({ transform: },
{ duration: ,
iterations: });

e Chrome 36
e Polyfill web-animations-js and web-animations-next

One way around this is to use the Web Animations API to create animations.
This lets the browser optimize the animation in the same way as it
does for declarative animations like CSS Animations/Transitions.

https://github.com/web-animations/web-animations-js
https://github.com/web-animations/web-animations-next

<html=
“head=

1\

Tunction() {
lem.
remaoval);

.srticle{‘..'L
margin:
Tem;

1
I

I Summarizing our journey... l

<html=
“head=

1\

(function{} { Tr"';,,-" Lsin g Ty

=IEm. to avold parsing
remaoval);

article { \

margin:
Tem;

et

<html=
“head=

Tunction() {
slam.
ramovag);

article I \

margin:
Tem;

et

<html=
“head=

Tunction() {
slam.
ramovag);

article I \

margin:
Tem;

et

<html=
“head=

Tunction() {
lem.
remaoval);

.srticle{‘..'L
margin:
Tem;
will—cha

et

endear

Using our knowledge of how browsers work we can make animations
that run smoothly on any browser on any device and convey their intended effect.

Web Animations spec

dev.w3.org/fxtf/web-animations/

4 N
Brian Birtles
bbirtles@mozilla.com
@brianskold
_ 4

HTML version of slides: http://people.mozilla.org/~bbirtles/pres/graphical-web-2014/

http://dev.w3.org/fxtf/web-animations/
mailto:bbirtles@mozilla.com
https://twitter.com/brianskold
http://people.mozilla.org/~bbirtles/pres/graphical-web-2014/

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70

