
HTML version of slides: http://people.mozilla.org/~bbirtles/pres/graphical-web-2014/

http://people.mozilla.org/~bbirtles/pres/graphical-web-2014/

http://topherchris.com/post/55109717733

Animations can be used for more than just cat gifs.
They can be used to tell stories too.

http://www.youtube.com/watch?v=Yg5BZARVDAs

Animation is essentially about using time
to convey information.

http://www.flickr.com/photos/twitteroffice/5885172082/in/photostream/

Animation can be used as component of user interface
design to describe the results of an action.

It can be more intuitive without cluttering the
screen or requiring extra explanation.

But when animation
runs slowly or
hesitates, that

information is lost.

Hence for animation,
performance is

critical.

In order to fix
animation

performance in Web
pages, we really need

to understand how
browsers work.

http://people.mozilla.org/~bbirtles/pres/graphical-web-2014/examples/simple-animation-fixed-time.html

As we follow the journey from markup to our eyeballs, we will consider how we can
make each step smoother or skip it all together.

Parsing can be slow. Most browsers do it in a separate thread.
If we skip parsing while animating surely it goes faster?

A micro-benchmark suggests an
API that skips parsing is faster.

How about in a real-world animation?

http://people.mozilla.org/~bbirtles/pres/graphical-web-2014/examples/attribute-setting-real.svg
http://people.mozilla.org/~bbirtles/pres/graphical-web-2014/examples/attribute-setting-real.svg

It doesn’t make a lot of difference. Perhaps 3~4 fps at best.

There are bigger performance gains to be had from the style system.

After creating a
DOM tree,

browsers construct
a render tree

suitable for painting
to the screen.

What happens if
we exploit the fact
that display:none
elements don’t
appear in the
render tree?

(Firefox doesn’t show such a big difference in this case since the test case animates ‘top’ which, as
we’ll see, does not trigger reflow in Firefox so setting display:none doesn’t have as big an impact.)

This technique improved performance for the Parapara animation project
where characters are set to display:none when they are off-stage.

http://parapara.mozlabs.jp/

Of the operations
performed in the

style system,
the layout/reflow

step is often
expensive.

We can measure
style resolution
and layout time
in profiling tools

in Firefox
(above) and

Chrome (below).

Firefox lets you inspect reflow (layout) in the console.

Let’s see how different animations affect layout

http://people.mozilla.org/~bbirtles/pres/graphical-web-2014/examples/reflow.html

Animating margin-top causes reflow on every frame

But in Firefox, animating top or transform
does not trigger reflow (layout)

http://people.mozilla.org/~bbirtles/pres/graphical-web-2014/examples/reflow.html

Comparing the performance of margin-top and transform, transform is faster because it
avoids reflow but it also benefits from layerization which we will see later.

Since these processes can be expensive,
browsers avoid doing them until either
they have to paint, or until script asks a

question about the current state.

http://people.mozilla.org/~bbirtles/pres/graphical-web-2014/examples/flush-layout-eg.html
http://people.mozilla.org/~bbirtles/pres/graphical-web-2014/examples/flush-layout-eg.html?besmart

Painting is often the most expensive part. Firefox creates a display list
of items to paint, then creates a layer tree into which it paints.

The layers in the tree are then composited together.

We can see exactly what area is being painted

When animating transform we only paint once at the start.
This is because it gets put in its own layer.

When animating independent areas Chrome seems to paint the
union of dirty areas so layerization can be more important there.

However, SVG filters are often hardware accelerated.
Sometimes the combination of features is what is slow.

We can sometimes make things faster by pre-rendering.
Desktop apps, native apps, Flash apps, everyone does it.

Alternatively, for SVG, simply referring to the SVG using instead of
<iframe> lets the browser make more optimizations. Especially Firefox.

Most browsers hardware accelerate layer compositing.
That means they can often paint an animated element once then

just change its transform, opacity etc. and let the GPU re-composite.
That saves a lot of painting.

It’s up to the browser what gets a layer.
Typically it’s things like the above.

Firefox OS

In the previous example, we can see why the transform animation
only gets painted once. That element has its own layer.

Layerization is performed by the browser so it can
automatically do it for SVG (SMIL) animation too.

And even for scripted animation, the browser can detect that
an element is moving a lot and decide it would benefit from

being on a separate layer.
(The red boxes in this example indicate image layers.)

Often, however, the browser won’t create a layer until an element starts
animating. Sometimes that can be too late and can cause the animation

to stutter at the start as the browser sets up the layer.

will-change:transform/
opacity/etc. lets the
browser create the
layer in advance if it

thinks that would help
improve performance.

transform:translateZ(0)

doesn’t work cross-
browser

Apart from low frame-rates, animation performance is affected by other
processes on the same thread like layout, garbage collection,

or other scripts, that cause the animation to stop and start (jank).

To avoid jank, some animations can be run on a separate thread/process.

Unlike animations running on the main thread which stop and start…

… these animations continue along uninterrupted.

But not everything can be animated in this way.
In particular, when the browser doesn’t know all the parameters

of the animation—like most scripted animations—the browser can’t
delegate the animation to another thread/process.

One way around this is to use the Web Animations API to create animations.
This lets the browser optimize the animation in the same way as it

does for declarative animations like CSS Animations/Transitions.

https://github.com/web-animations/web-animations-js
https://github.com/web-animations/web-animations-next

Summarizing our journey…

Using our knowledge of how browsers work we can make animations
that run smoothly on any browser on any device and convey their intended effect.

HTML version of slides: http://people.mozilla.org/~bbirtles/pres/graphical-web-2014/

http://dev.w3.org/fxtf/web-animations/
mailto:bbirtles@mozilla.com
https://twitter.com/brianskold
http://people.mozilla.org/~bbirtles/pres/graphical-web-2014/

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70

